MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopkgen Structured version   Visualization version   GIF version

Theorem qtopkgen 22872
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopkgen ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)

Proof of Theorem qtopkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentop 22704 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
2 qtopcmp.1 . . . 4 𝑋 = 𝐽
32qtoptop 22862 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
41, 3sylan 580 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
5 elssuni 4877 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
65adantl 482 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
74adantr 481 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Top)
8 eqid 2740 . . . . . . . . 9 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
98kgenuni 22701 . . . . . . . 8 ((𝐽 qTop 𝐹) ∈ Top → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
107, 9syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
116, 10sseqtrrd 3967 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝐽 qTop 𝐹))
12 simpll 764 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ ran 𝑘Gen)
1312, 1syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ Top)
14 simplr 766 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 Fn 𝑋)
15 dffn4 6692 . . . . . . . 8 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
1614, 15sylib 217 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹:𝑋onto→ran 𝐹)
172qtopuni 22864 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
1813, 16, 17syl2anc 584 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → ran 𝐹 = (𝐽 qTop 𝐹))
1911, 18sseqtrrd 3967 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ran 𝐹)
202toptopon 22077 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2113, 20sylib 217 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ (TopOn‘𝑋))
22 qtopid 22867 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
2321, 14, 22syl2anc 584 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
24 kgencn3 22720 . . . . . . . 8 ((𝐽 ∈ ran 𝑘Gen ∧ (𝐽 qTop 𝐹) ∈ Top) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2512, 7, 24syl2anc 584 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2623, 25eleqtrd 2843 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
27 cnima 22427 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
2826, 27sylancom 588 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
292elqtop2 22863 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹:𝑋onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3012, 16, 29syl2anc 584 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3119, 28, 30mpbir2and 710 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ∈ (𝐽 qTop 𝐹))
3231ex 413 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 ∈ (𝐽 qTop 𝐹)))
3332ssrdv 3932 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹))
34 iskgen2 22710 . 2 ((𝐽 qTop 𝐹) ∈ ran 𝑘Gen ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹)))
354, 33, 34sylanbrc 583 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wss 3892   cuni 4845  ccnv 5589  ran crn 5591  cima 5593   Fn wfn 6427  ontowfo 6430  cfv 6432  (class class class)co 7272   qTop cqtop 17225  Topctop 22053  TopOnctopon 22070   Cn ccn 22386  𝑘Genckgen 22695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-fin 8729  df-fi 9158  df-rest 17144  df-topgen 17165  df-qtop 17229  df-top 22054  df-topon 22071  df-bases 22107  df-cn 22389  df-cmp 22549  df-kgen 22696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator