Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopkgen Structured version   Visualization version   GIF version

Theorem qtopkgen 21933
 Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopkgen ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)

Proof of Theorem qtopkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentop 21765 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
2 qtopcmp.1 . . . 4 𝑋 = 𝐽
32qtoptop 21923 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
41, 3sylan 575 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
5 elssuni 4704 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
65adantl 475 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
74adantr 474 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Top)
8 eqid 2778 . . . . . . . . 9 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
98kgenuni 21762 . . . . . . . 8 ((𝐽 qTop 𝐹) ∈ Top → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
107, 9syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
116, 10sseqtr4d 3861 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝐽 qTop 𝐹))
12 simpll 757 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ ran 𝑘Gen)
1312, 1syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ Top)
14 simplr 759 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 Fn 𝑋)
15 dffn4 6374 . . . . . . . 8 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
1614, 15sylib 210 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹:𝑋onto→ran 𝐹)
172qtopuni 21925 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
1813, 16, 17syl2anc 579 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → ran 𝐹 = (𝐽 qTop 𝐹))
1911, 18sseqtr4d 3861 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ran 𝐹)
202toptopon 21140 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2113, 20sylib 210 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ (TopOn‘𝑋))
22 qtopid 21928 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
2321, 14, 22syl2anc 579 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
24 kgencn3 21781 . . . . . . . 8 ((𝐽 ∈ ran 𝑘Gen ∧ (𝐽 qTop 𝐹) ∈ Top) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2512, 7, 24syl2anc 579 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2623, 25eleqtrd 2861 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
27 cnima 21488 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
2826, 27sylancom 582 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
292elqtop2 21924 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹:𝑋onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3012, 16, 29syl2anc 579 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3119, 28, 30mpbir2and 703 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ∈ (𝐽 qTop 𝐹))
3231ex 403 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 ∈ (𝐽 qTop 𝐹)))
3332ssrdv 3827 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹))
34 iskgen2 21771 . 2 ((𝐽 qTop 𝐹) ∈ ran 𝑘Gen ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹)))
354, 33, 34sylanbrc 578 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107   ⊆ wss 3792  ∪ cuni 4673  ◡ccnv 5356  ran crn 5358   “ cima 5360   Fn wfn 6132  –onto→wfo 6135  ‘cfv 6137  (class class class)co 6924   qTop cqtop 16560  Topctop 21116  TopOnctopon 21133   Cn ccn 21447  𝑘Genckgen 21756 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-fin 8247  df-fi 8607  df-rest 16480  df-topgen 16501  df-qtop 16564  df-top 21117  df-topon 21134  df-bases 21169  df-cn 21450  df-cmp 21610  df-kgen 21757 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator