| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | kgentop 23551 | . . 3
⊢ (𝐽 ∈ ran 𝑘Gen →
𝐽 ∈
Top) | 
| 2 |  | qtopcmp.1 | . . . 4
⊢ 𝑋 = ∪
𝐽 | 
| 3 | 2 | qtoptop 23709 | . . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) | 
| 4 | 1, 3 | sylan 580 | . 2
⊢ ((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) | 
| 5 |  | elssuni 4936 | . . . . . . . 8
⊢ (𝑥 ∈
(𝑘Gen‘(𝐽 qTop
𝐹)) → 𝑥 ⊆ ∪ (𝑘Gen‘(𝐽 qTop 𝐹))) | 
| 6 | 5 | adantl 481 | . . . . . . 7
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ∪
(𝑘Gen‘(𝐽 qTop
𝐹))) | 
| 7 | 4 | adantr 480 | . . . . . . . 8
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Top) | 
| 8 |  | eqid 2736 | . . . . . . . . 9
⊢ ∪ (𝐽
qTop 𝐹) = ∪ (𝐽
qTop 𝐹) | 
| 9 | 8 | kgenuni 23548 | . . . . . . . 8
⊢ ((𝐽 qTop 𝐹) ∈ Top → ∪ (𝐽
qTop 𝐹) = ∪ (𝑘Gen‘(𝐽 qTop 𝐹))) | 
| 10 | 7, 9 | syl 17 | . . . . . . 7
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → ∪
(𝐽 qTop 𝐹) = ∪
(𝑘Gen‘(𝐽 qTop
𝐹))) | 
| 11 | 6, 10 | sseqtrrd 4020 | . . . . . 6
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ∪ (𝐽 qTop 𝐹)) | 
| 12 |  | simpll 766 | . . . . . . . 8
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ ran 𝑘Gen) | 
| 13 | 12, 1 | syl 17 | . . . . . . 7
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ Top) | 
| 14 |  | simplr 768 | . . . . . . . 8
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 Fn 𝑋) | 
| 15 |  | dffn4 6825 | . . . . . . . 8
⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | 
| 16 | 14, 15 | sylib 218 | . . . . . . 7
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹:𝑋–onto→ran 𝐹) | 
| 17 | 2 | qtopuni 23711 | . . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) | 
| 18 | 13, 16, 17 | syl2anc 584 | . . . . . 6
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) | 
| 19 | 11, 18 | sseqtrrd 4020 | . . . . 5
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ran 𝐹) | 
| 20 | 2 | toptopon 22924 | . . . . . . . . 9
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 21 | 13, 20 | sylib 218 | . . . . . . . 8
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 22 |  | qtopid 23714 | . . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | 
| 23 | 21, 14, 22 | syl2anc 584 | . . . . . . 7
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | 
| 24 |  | kgencn3 23567 | . . . . . . . 8
⊢ ((𝐽 ∈ ran 𝑘Gen ∧
(𝐽 qTop 𝐹) ∈ Top) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹)))) | 
| 25 | 12, 7, 24 | syl2anc 584 | . . . . . . 7
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹)))) | 
| 26 | 23, 25 | eleqtrd 2842 | . . . . . 6
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹)))) | 
| 27 |  | cnima 23274 | . . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (◡𝐹 “ 𝑥) ∈ 𝐽) | 
| 28 | 26, 27 | sylancom 588 | . . . . 5
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (◡𝐹 “ 𝑥) ∈ 𝐽) | 
| 29 | 2 | elqtop2 23710 | . . . . . 6
⊢ ((𝐽 ∈ ran 𝑘Gen ∧
𝐹:𝑋–onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | 
| 30 | 12, 16, 29 | syl2anc 584 | . . . . 5
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | 
| 31 | 19, 28, 30 | mpbir2and 713 | . . . 4
⊢ (((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ∈ (𝐽 qTop 𝐹)) | 
| 32 | 31 | ex 412 | . . 3
⊢ ((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) → (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 ∈ (𝐽 qTop 𝐹))) | 
| 33 | 32 | ssrdv 3988 | . 2
⊢ ((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) → (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹)) | 
| 34 |  | iskgen2 23557 | . 2
⊢ ((𝐽 qTop 𝐹) ∈ ran 𝑘Gen ↔ ((𝐽 qTop 𝐹) ∈ Top ∧
(𝑘Gen‘(𝐽 qTop
𝐹)) ⊆ (𝐽 qTop 𝐹))) | 
| 35 | 4, 33, 34 | sylanbrc 583 | 1
⊢ ((𝐽 ∈ ran 𝑘Gen ∧
𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen) |