MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopkgen Structured version   Visualization version   GIF version

Theorem qtopkgen 22315
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopkgen ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)

Proof of Theorem qtopkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentop 22147 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
2 qtopcmp.1 . . . 4 𝑋 = 𝐽
32qtoptop 22305 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
41, 3sylan 583 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
5 elssuni 4830 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
65adantl 485 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
74adantr 484 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Top)
8 eqid 2798 . . . . . . . . 9 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
98kgenuni 22144 . . . . . . . 8 ((𝐽 qTop 𝐹) ∈ Top → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
107, 9syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
116, 10sseqtrrd 3956 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝐽 qTop 𝐹))
12 simpll 766 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ ran 𝑘Gen)
1312, 1syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ Top)
14 simplr 768 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 Fn 𝑋)
15 dffn4 6571 . . . . . . . 8 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
1614, 15sylib 221 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹:𝑋onto→ran 𝐹)
172qtopuni 22307 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
1813, 16, 17syl2anc 587 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → ran 𝐹 = (𝐽 qTop 𝐹))
1911, 18sseqtrrd 3956 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ran 𝐹)
202toptopon 21522 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2113, 20sylib 221 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ (TopOn‘𝑋))
22 qtopid 22310 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
2321, 14, 22syl2anc 587 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
24 kgencn3 22163 . . . . . . . 8 ((𝐽 ∈ ran 𝑘Gen ∧ (𝐽 qTop 𝐹) ∈ Top) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2512, 7, 24syl2anc 587 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2623, 25eleqtrd 2892 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
27 cnima 21870 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
2826, 27sylancom 591 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
292elqtop2 22306 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹:𝑋onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3012, 16, 29syl2anc 587 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3119, 28, 30mpbir2and 712 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ∈ (𝐽 qTop 𝐹))
3231ex 416 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 ∈ (𝐽 qTop 𝐹)))
3332ssrdv 3921 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹))
34 iskgen2 22153 . 2 ((𝐽 qTop 𝐹) ∈ ran 𝑘Gen ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹)))
354, 33, 34sylanbrc 586 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881   cuni 4800  ccnv 5518  ran crn 5520  cima 5522   Fn wfn 6319  ontowfo 6322  cfv 6324  (class class class)co 7135   qTop cqtop 16768  Topctop 21498  TopOnctopon 21515   Cn ccn 21829  𝑘Genckgen 22138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-qtop 16772  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cmp 21992  df-kgen 22139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator