| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtoptop | Structured version Visualization version GIF version | ||
| Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| qtoptop | ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . 3 ⊢ (𝐹 Fn 𝑋 → 𝐹 Fn 𝑋) | |
| 3 | qtoptop.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | topopn 22826 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 5 | fnex 7173 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐹 ∈ V) | |
| 6 | 2, 4, 5 | syl2anr 597 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ V) |
| 7 | fnfun 6600 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → Fun 𝐹) |
| 9 | qtoptop2 23619 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ V ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | |
| 10 | 1, 6, 8, 9 | syl3anc 1373 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 Fun wfun 6493 Fn wfn 6494 (class class class)co 7369 qTop cqtop 17442 Topctop 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-qtop 17446 df-top 22814 |
| This theorem is referenced by: qtoptopon 23624 qtopkgen 23630 qtopt1 33818 qtophaus 33819 |
| Copyright terms: Public domain | W3C validator |