![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtoptop | Structured version Visualization version GIF version |
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtoptop | ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐹 Fn 𝑋 → 𝐹 Fn 𝑋) | |
3 | qtoptop.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topopn 22828 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | fnex 7235 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐹 ∈ V) | |
6 | 2, 4, 5 | syl2anr 595 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ V) |
7 | fnfun 6659 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
8 | 7 | adantl 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → Fun 𝐹) |
9 | qtoptop2 23623 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ V ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | |
10 | 1, 6, 8, 9 | syl3anc 1368 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∪ cuni 4912 Fun wfun 6547 Fn wfn 6548 (class class class)co 7426 qTop cqtop 17492 Topctop 22815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-qtop 17496 df-top 22816 |
This theorem is referenced by: qtoptopon 23628 qtopkgen 23634 qtopt1 33469 qtophaus 33470 |
Copyright terms: Public domain | W3C validator |