![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtoptop | Structured version Visualization version GIF version |
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtoptop | ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐹 Fn 𝑋 → 𝐹 Fn 𝑋) | |
3 | qtoptop.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topopn 22759 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | fnex 7213 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐹 ∈ V) | |
6 | 2, 4, 5 | syl2anr 596 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ V) |
7 | fnfun 6642 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → Fun 𝐹) |
9 | qtoptop2 23554 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ V ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | |
10 | 1, 6, 8, 9 | syl3anc 1368 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∪ cuni 4902 Fun wfun 6530 Fn wfn 6531 (class class class)co 7404 qTop cqtop 17456 Topctop 22746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-qtop 17460 df-top 22747 |
This theorem is referenced by: qtoptopon 23559 qtopkgen 23565 qtopt1 33345 qtophaus 33346 |
Copyright terms: Public domain | W3C validator |