![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtoptop | Structured version Visualization version GIF version |
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtoptop | ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐹 Fn 𝑋 → 𝐹 Fn 𝑋) | |
3 | qtoptop.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topopn 22399 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | fnex 7215 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐹 ∈ V) | |
6 | 2, 4, 5 | syl2anr 597 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ V) |
7 | fnfun 6646 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
8 | 7 | adantl 482 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → Fun 𝐹) |
9 | qtoptop2 23194 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ V ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | |
10 | 1, 6, 8, 9 | syl3anc 1371 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cuni 4907 Fun wfun 6534 Fn wfn 6535 (class class class)co 7405 qTop cqtop 17445 Topctop 22386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-qtop 17449 df-top 22387 |
This theorem is referenced by: qtoptopon 23199 qtopkgen 23205 qtopt1 32803 qtophaus 32804 |
Copyright terms: Public domain | W3C validator |