![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtoptop | Structured version Visualization version GIF version |
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtoptop | ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ Top) | |
2 | id 22 | . . 3 ⊢ (𝐹 Fn 𝑋 → 𝐹 Fn 𝑋) | |
3 | qtoptop.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topopn 22258 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | fnex 7168 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐹 ∈ V) | |
6 | 2, 4, 5 | syl2anr 598 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ V) |
7 | fnfun 6603 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
8 | 7 | adantl 483 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → Fun 𝐹) |
9 | qtoptop2 23053 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ V ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | |
10 | 1, 6, 8, 9 | syl3anc 1372 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3446 ∪ cuni 4866 Fun wfun 6491 Fn wfn 6492 (class class class)co 7358 qTop cqtop 17386 Topctop 22245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-qtop 17390 df-top 22246 |
This theorem is referenced by: qtoptopon 23058 qtopkgen 23064 qtopt1 32419 qtophaus 32420 |
Copyright terms: Public domain | W3C validator |