MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptop Structured version   Visualization version   GIF version

Theorem qtoptop 23585
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1 𝑋 = 𝐽
Assertion
Ref Expression
qtoptop ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)

Proof of Theorem qtoptop
StepHypRef Expression
1 simpl 482 . 2 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ Top)
2 id 22 . . 3 (𝐹 Fn 𝑋𝐹 Fn 𝑋)
3 qtoptop.1 . . . 4 𝑋 = 𝐽
43topopn 22791 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
5 fnex 7153 . . 3 ((𝐹 Fn 𝑋𝑋𝐽) → 𝐹 ∈ V)
62, 4, 5syl2anr 597 . 2 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ V)
7 fnfun 6582 . . 3 (𝐹 Fn 𝑋 → Fun 𝐹)
87adantl 481 . 2 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → Fun 𝐹)
9 qtoptop2 23584 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ V ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)
101, 6, 8, 9syl3anc 1373 1 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436   cuni 4858  Fun wfun 6476   Fn wfn 6477  (class class class)co 7349   qTop cqtop 17407  Topctop 22778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-qtop 17411  df-top 22779
This theorem is referenced by:  qtoptopon  23589  qtopkgen  23595  qtopt1  33818  qtophaus  33819
  Copyright terms: Public domain W3C validator