MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzfz Structured version   Visualization version   GIF version

Theorem eluzfz 13443
Description: Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz
StepHypRef Expression
1 elfzuzb 13442 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
21biimpri 227 1 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  cfv 6501  (class class class)co 7362  cuz 12770  ...cfz 13431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-neg 11395  df-z 12507  df-uz 12771  df-fz 13432
This theorem is referenced by:  eluzfz1  13455  eluzfz2  13456  elfz1end  13478  4fvwrd4  13568  clwwlkinwwlk  29026  ssnnssfz  31732  esumpmono  32718  esumcvg  32725  ssnn0ssfz  46499
  Copyright terms: Public domain W3C validator