MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1end Structured version   Visualization version   GIF version

Theorem elfz1end 13527
Description: A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elfz1end (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))

Proof of Theorem elfz1end
StepHypRef Expression
1 elnnuz 12862 . . . 4 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
21biimpi 215 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
3 nnz 12575 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
4 uzid 12833 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
53, 4syl 17 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ𝐴))
6 eluzfz 13492 . . 3 ((𝐴 ∈ (ℤ‘1) ∧ 𝐴 ∈ (ℤ𝐴)) → 𝐴 ∈ (1...𝐴))
72, 5, 6syl2anc 583 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴))
8 elfznn 13526 . 2 (𝐴 ∈ (1...𝐴) → 𝐴 ∈ ℕ)
97, 8impbii 208 1 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  cfv 6533  (class class class)co 7401  1c1 11106  cn 12208  cz 12554  cuz 12818  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  pfxtrcfv  14639  prmind2  16618  1stcfb  23270  imasdsf1olem  24200  taylthlem1  26225  birthdaylem1  26798  2sqlem10  27276  clwwlkvbij  29801  cycpmfv2  32707  submat1n  33240  subfacp1lem6  34631  erdszelem4  34640  erdszelem8  34644  poimirlem4  36948  poimirlem6  36950  poimirlem7  36951  poimirlem16  36960  poimirlem19  36963  poimirlem20  36964  poimirlem23  36967  rexrabdioph  41987  2rexfrabdioph  41989  3rexfrabdioph  41990  4rexfrabdioph  41991  6rexfrabdioph  41992  7rexfrabdioph  41993  elnn0rabdioph  41996  dvdsrabdioph  42003  jm2.27dlem3  42205
  Copyright terms: Public domain W3C validator