![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12645 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 9080 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfi 9082 | . . . 4 ⊢ {𝐴} ∈ Fin | |
5 | snfi 9082 | . . . 4 ⊢ {1} ∈ Fin | |
6 | hashen 14383 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
8 | 3, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
9 | fzsn 13603 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
10 | 9 | fveq2d 6911 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
11 | 1nn0 12540 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
12 | hashfz1 14382 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
14 | 10, 13 | eqtr3di 2790 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
16 | 8, 15 | eqtrdi 2791 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {csn 4631 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ≈ cen 8981 Fincfn 8984 1c1 11154 ℕ0cn0 12524 ℤcz 12611 ...cfz 13544 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: hashen1 14406 hashrabrsn 14408 hashrabsn01 14409 hashunsng 14428 hashunsngx 14429 hashprg 14431 elprchashprn2 14432 hashdifsn 14450 hashsn01 14452 hash1snb 14455 hashmap 14471 hashfun 14473 hashbclem 14488 hashbc 14489 hashf1 14493 hash2prde 14506 hash2pwpr 14512 hashge2el2dif 14516 hash7g 14522 hash3tpexb 14530 hashdifsnp1 14542 s1len 14641 ackbijnn 15861 phicl2 16802 dfphi2 16808 vdwlem8 17022 ramcl 17063 cshwshashnsame 17138 efmnd1hash 18918 symg1hash 19422 pgp0 19629 odcau 19637 sylow2a 19652 sylow3lem6 19665 prmcyg 19927 gsumsnfd 19984 ablfac1eulem 20107 ablfac1eu 20108 pgpfaclem2 20117 prmgrpsimpgd 20149 ablsimpgprmd 20150 c0snmhm 20480 0ringdif 20544 0ring01eqbi 20549 rng1nnzr 20793 fta1glem2 26223 fta1blem 26225 fta1lem 26364 vieta1lem2 26368 vieta1 26369 vmappw 27174 umgredgnlp 29179 lfuhgr1v0e 29286 usgr1vr 29287 uvtxnm1nbgr 29436 1hevtxdg1 29539 1egrvtxdg1 29542 lfgrwlkprop 29720 rusgrnumwwlkb0 30001 clwwlknon1le1 30130 eupth2eucrct 30246 fusgreghash2wspv 30364 numclwlk1lem1 30398 ex-hash 30482 0ringsubrg 33238 drngidlhash 33442 prmidl0 33458 qsidomlem1 33460 krull 33487 qsdrng 33505 rlmdim 33637 rgmoddimOLD 33638 lsatdim 33645 zarcmplem 33842 esumcst 34044 cntnevol 34209 coinflippv 34465 ccatmulgnn0dir 34536 ofcccat 34537 lpadlem2 34674 derang0 35154 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 frlmvscadiccat 42493 |
Copyright terms: Public domain | W3C validator |