![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11697 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 8279 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 683 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfi 8280 | . . . 4 ⊢ {𝐴} ∈ Fin | |
5 | snfi 8280 | . . . 4 ⊢ {1} ∈ Fin | |
6 | hashen 13387 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
7 | 4, 5, 6 | mp2an 684 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
8 | 3, 7 | sylibr 226 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
9 | 1nn0 11598 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
10 | hashfz1 13386 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
12 | fzsn 12637 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | 12 | fveq2d 6415 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
14 | 11, 13 | syl5reqr 2848 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
16 | 8, 15 | syl6eq 2849 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 {csn 4368 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 ≈ cen 8192 Fincfn 8195 1c1 10225 ℕ0cn0 11580 ℤcz 11666 ...cfz 12580 ♯chash 13370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-hash 13371 |
This theorem is referenced by: hashen1 13410 hashrabrsn 13411 hashrabsn01 13412 hashunsng 13431 hashprg 13432 elprchashprn2 13433 hashdifsn 13451 hashsn01 13453 hash1snb 13456 hashmap 13471 hashfun 13473 hashbclem 13485 hashbc 13486 hashf1 13490 hash2prde 13501 hash2pwpr 13507 hashge2el2dif 13511 hashdifsnp1 13527 s1len 13626 ackbijnn 14898 phicl2 15806 dfphi2 15812 vdwlem8 16025 ramcl 16066 cshwshashnsame 16138 symg1hash 18127 pgp0 18324 odcau 18332 sylow2a 18347 sylow3lem6 18360 prmcyg 18610 gsumsnfd 18666 ablfac1eulem 18787 ablfac1eu 18788 pgpfaclem2 18797 0ring01eqbi 19596 rng1nnzr 19597 fta1glem2 24267 fta1blem 24269 fta1lem 24403 vieta1lem2 24407 vieta1 24408 vmappw 25194 umgredgnlp 26383 lfuhgr1v0e 26488 usgr1vr 26489 uvtxnm1nbgr 26653 1hevtxdg1 26756 1egrvtxdg1 26759 lfgrwlkprop 26940 rusgrnumwwlkb0 27262 clwwlknon1le1 27440 eupth2eucrct 27562 fusgreghash2wspv 27684 numclwlk1lem1 27742 ex-hash 27838 esumcst 30641 cntnevol 30807 coinflippv 31062 ccatmulgnn0dir 31137 ofcccat 31138 derang0 31668 poimirlem26 33924 poimirlem27 33925 poimirlem28 33926 0ringdif 42669 c0snmhm 42714 |
Copyright terms: Public domain | W3C validator |