![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12673 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 9106 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfi 9109 | . . . 4 ⊢ {𝐴} ∈ Fin | |
5 | snfi 9109 | . . . 4 ⊢ {1} ∈ Fin | |
6 | hashen 14396 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
8 | 3, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
9 | fzsn 13626 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
10 | 9 | fveq2d 6924 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
11 | 1nn0 12569 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
12 | hashfz1 14395 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
14 | 10, 13 | eqtr3di 2795 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
16 | 8, 15 | eqtrdi 2796 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ≈ cen 9000 Fincfn 9003 1c1 11185 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: hashen1 14419 hashrabrsn 14421 hashrabsn01 14422 hashunsng 14441 hashunsngx 14442 hashprg 14444 elprchashprn2 14445 hashdifsn 14463 hashsn01 14465 hash1snb 14468 hashmap 14484 hashfun 14486 hashbclem 14501 hashbc 14502 hashf1 14506 hash2prde 14519 hash2pwpr 14525 hashge2el2dif 14529 hash7g 14535 hash3tpexb 14543 hashdifsnp1 14555 s1len 14654 ackbijnn 15876 phicl2 16815 dfphi2 16821 vdwlem8 17035 ramcl 17076 cshwshashnsame 17151 efmnd1hash 18927 symg1hash 19431 pgp0 19638 odcau 19646 sylow2a 19661 sylow3lem6 19674 prmcyg 19936 gsumsnfd 19993 ablfac1eulem 20116 ablfac1eu 20117 pgpfaclem2 20126 prmgrpsimpgd 20158 ablsimpgprmd 20159 c0snmhm 20489 0ringdif 20553 0ring01eqbi 20558 rng1nnzr 20798 fta1glem2 26228 fta1blem 26230 fta1lem 26367 vieta1lem2 26371 vieta1 26372 vmappw 27177 umgredgnlp 29182 lfuhgr1v0e 29289 usgr1vr 29290 uvtxnm1nbgr 29439 1hevtxdg1 29542 1egrvtxdg1 29545 lfgrwlkprop 29723 rusgrnumwwlkb0 30004 clwwlknon1le1 30133 eupth2eucrct 30249 fusgreghash2wspv 30367 numclwlk1lem1 30401 ex-hash 30485 0ringsubrg 33223 drngidlhash 33427 prmidl0 33443 qsidomlem1 33445 krull 33472 qsdrng 33490 rlmdim 33622 rgmoddimOLD 33623 lsatdim 33630 zarcmplem 33827 esumcst 34027 cntnevol 34192 coinflippv 34448 ccatmulgnn0dir 34519 ofcccat 34520 lpadlem2 34657 derang0 35137 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 frlmvscadiccat 42461 |
Copyright terms: Public domain | W3C validator |