| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version | ||
| Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12627 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | en2sn 9060 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
| 4 | snfi 9062 | . . . 4 ⊢ {𝐴} ∈ Fin | |
| 5 | snfi 9062 | . . . 4 ⊢ {1} ∈ Fin | |
| 6 | hashen 14370 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
| 8 | 3, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
| 9 | fzsn 13588 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 10 | 9 | fveq2d 6885 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
| 11 | 1nn0 12522 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 12 | hashfz1 14369 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
| 14 | 10, 13 | eqtr3di 2786 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
| 15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
| 16 | 8, 15 | eqtrdi 2787 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ≈ cen 8961 Fincfn 8964 1c1 11135 ℕ0cn0 12506 ℤcz 12593 ...cfz 13529 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: hashen1 14393 hashrabrsn 14395 hashrabsn01 14396 hashunsng 14415 hashunsngx 14416 hashprg 14418 elprchashprn2 14419 hashdifsn 14437 hashsn01 14439 hash1snb 14442 hashmap 14458 hashfun 14460 hashbclem 14475 hashbc 14476 hashf1 14480 hash2prde 14493 hash2pwpr 14499 hashge2el2dif 14503 hash7g 14509 hash3tpexb 14517 hashdifsnp1 14529 s1len 14629 ackbijnn 15849 phicl2 16792 dfphi2 16798 vdwlem8 17013 ramcl 17054 cshwshashnsame 17128 efmnd1hash 18875 symg1hash 19376 pgp0 19582 odcau 19590 sylow2a 19605 sylow3lem6 19618 prmcyg 19880 gsumsnfd 19937 ablfac1eulem 20060 ablfac1eu 20061 pgpfaclem2 20070 prmgrpsimpgd 20102 ablsimpgprmd 20103 c0snmhm 20428 0ringdif 20492 0ring01eqbi 20497 rng1nnzr 20740 fta1glem2 26131 fta1blem 26133 fta1lem 26272 vieta1lem2 26276 vieta1 26277 vmappw 27083 umgredgnlp 29131 lfuhgr1v0e 29238 usgr1vr 29239 uvtxnm1nbgr 29388 1hevtxdg1 29491 1egrvtxdg1 29494 lfgrwlkprop 29672 rusgrnumwwlkb0 29958 clwwlknon1le1 30087 eupth2eucrct 30203 fusgreghash2wspv 30321 numclwlk1lem1 30355 ex-hash 30439 0ringsubrg 33251 drngidlhash 33454 prmidl0 33470 qsidomlem1 33472 krull 33499 qsdrng 33517 rlmdim 33654 rgmoddimOLD 33655 lsatdim 33662 zarcmplem 33917 esumcst 34099 cntnevol 34264 coinflippv 34521 ccatmulgnn0dir 34579 ofcccat 34580 lpadlem2 34717 derang0 35196 poimirlem26 37675 poimirlem27 37676 poimirlem28 37677 frlmvscadiccat 42496 |
| Copyright terms: Public domain | W3C validator |