| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version | ||
| Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12563 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | en2sn 9012 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
| 4 | snfi 9014 | . . . 4 ⊢ {𝐴} ∈ Fin | |
| 5 | snfi 9014 | . . . 4 ⊢ {1} ∈ Fin | |
| 6 | hashen 14312 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
| 8 | 3, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
| 9 | fzsn 13527 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 10 | 9 | fveq2d 6862 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
| 11 | 1nn0 12458 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 12 | hashfz1 14311 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
| 14 | 10, 13 | eqtr3di 2779 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
| 15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
| 16 | 8, 15 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ≈ cen 8915 Fincfn 8918 1c1 11069 ℕ0cn0 12442 ℤcz 12529 ...cfz 13468 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: hashen1 14335 hashrabrsn 14337 hashrabsn01 14338 hashunsng 14357 hashunsngx 14358 hashprg 14360 elprchashprn2 14361 hashdifsn 14379 hashsn01 14381 hash1snb 14384 hashmap 14400 hashfun 14402 hashbclem 14417 hashbc 14418 hashf1 14422 hash2prde 14435 hash2pwpr 14441 hashge2el2dif 14445 hash7g 14451 hash3tpexb 14459 hashdifsnp1 14471 s1len 14571 ackbijnn 15794 phicl2 16738 dfphi2 16744 vdwlem8 16959 ramcl 17000 cshwshashnsame 17074 efmnd1hash 18819 symg1hash 19320 pgp0 19526 odcau 19534 sylow2a 19549 sylow3lem6 19562 prmcyg 19824 gsumsnfd 19881 ablfac1eulem 20004 ablfac1eu 20005 pgpfaclem2 20014 prmgrpsimpgd 20046 ablsimpgprmd 20047 c0snmhm 20372 0ringdif 20436 0ring01eqbi 20441 rng1nnzr 20684 fta1glem2 26074 fta1blem 26076 fta1lem 26215 vieta1lem2 26219 vieta1 26220 vmappw 27026 umgredgnlp 29074 lfuhgr1v0e 29181 usgr1vr 29182 uvtxnm1nbgr 29331 1hevtxdg1 29434 1egrvtxdg1 29437 lfgrwlkprop 29615 rusgrnumwwlkb0 29901 clwwlknon1le1 30030 eupth2eucrct 30146 fusgreghash2wspv 30264 numclwlk1lem1 30298 ex-hash 30382 0ringsubrg 33202 drngidlhash 33405 prmidl0 33421 qsidomlem1 33423 krull 33450 qsdrng 33468 rlmdim 33605 rgmoddimOLD 33606 lsatdim 33613 zarcmplem 33871 esumcst 34053 cntnevol 34218 coinflippv 34475 ccatmulgnn0dir 34533 ofcccat 34534 lpadlem2 34671 derang0 35156 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 frlmvscadiccat 42494 |
| Copyright terms: Public domain | W3C validator |