| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version | ||
| Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12505 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | en2sn 8966 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
| 4 | snfi 8968 | . . . 4 ⊢ {𝐴} ∈ Fin | |
| 5 | snfi 8968 | . . . 4 ⊢ {1} ∈ Fin | |
| 6 | hashen 14254 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
| 8 | 3, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
| 9 | fzsn 13469 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
| 11 | 1nn0 12400 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 12 | hashfz1 14253 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
| 14 | 10, 13 | eqtr3di 2779 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
| 15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
| 16 | 8, 15 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4577 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ≈ cen 8869 Fincfn 8872 1c1 11010 ℕ0cn0 12384 ℤcz 12471 ...cfz 13410 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: hashen1 14277 hashrabrsn 14279 hashrabsn01 14280 hashunsng 14299 hashunsngx 14300 hashprg 14302 elprchashprn2 14303 hashdifsn 14321 hashsn01 14323 hash1snb 14326 hashmap 14342 hashfun 14344 hashbclem 14359 hashbc 14360 hashf1 14364 hash2prde 14377 hash2pwpr 14383 hashge2el2dif 14387 hash7g 14393 hash3tpexb 14401 hashdifsnp1 14413 s1len 14513 ackbijnn 15735 phicl2 16679 dfphi2 16685 vdwlem8 16900 ramcl 16941 cshwshashnsame 17015 efmnd1hash 18766 symg1hash 19269 pgp0 19475 odcau 19483 sylow2a 19498 sylow3lem6 19511 prmcyg 19773 gsumsnfd 19830 ablfac1eulem 19953 ablfac1eu 19954 pgpfaclem2 19963 prmgrpsimpgd 19995 ablsimpgprmd 19996 c0snmhm 20348 0ringdif 20412 0ring01eqbi 20417 rng1nnzr 20660 fta1glem2 26072 fta1blem 26074 fta1lem 26213 vieta1lem2 26217 vieta1 26218 vmappw 27024 umgredgnlp 29092 lfuhgr1v0e 29199 usgr1vr 29200 uvtxnm1nbgr 29349 1hevtxdg1 29452 1egrvtxdg1 29455 lfgrwlkprop 29631 rusgrnumwwlkb0 29916 clwwlknon1le1 30045 eupth2eucrct 30161 fusgreghash2wspv 30279 numclwlk1lem1 30313 ex-hash 30397 0ringsubrg 33191 drngidlhash 33371 prmidl0 33387 qsidomlem1 33389 krull 33416 qsdrng 33434 rlmdim 33576 rgmoddimOLD 33577 lsatdim 33584 zarcmplem 33848 esumcst 34030 cntnevol 34195 coinflippv 34452 ccatmulgnn0dir 34510 ofcccat 34511 lpadlem2 34648 derang0 35142 poimirlem26 37626 poimirlem27 37627 poimirlem28 37628 frlmvscadiccat 42479 |
| Copyright terms: Public domain | W3C validator |