| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version | ||
| Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12570 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | en2sn 9015 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
| 4 | snfi 9017 | . . . 4 ⊢ {𝐴} ∈ Fin | |
| 5 | snfi 9017 | . . . 4 ⊢ {1} ∈ Fin | |
| 6 | hashen 14319 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
| 8 | 3, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
| 9 | fzsn 13534 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 10 | 9 | fveq2d 6865 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
| 11 | 1nn0 12465 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 12 | hashfz1 14318 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
| 14 | 10, 13 | eqtr3di 2780 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
| 15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
| 16 | 8, 15 | eqtrdi 2781 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ≈ cen 8918 Fincfn 8921 1c1 11076 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: hashen1 14342 hashrabrsn 14344 hashrabsn01 14345 hashunsng 14364 hashunsngx 14365 hashprg 14367 elprchashprn2 14368 hashdifsn 14386 hashsn01 14388 hash1snb 14391 hashmap 14407 hashfun 14409 hashbclem 14424 hashbc 14425 hashf1 14429 hash2prde 14442 hash2pwpr 14448 hashge2el2dif 14452 hash7g 14458 hash3tpexb 14466 hashdifsnp1 14478 s1len 14578 ackbijnn 15801 phicl2 16745 dfphi2 16751 vdwlem8 16966 ramcl 17007 cshwshashnsame 17081 efmnd1hash 18826 symg1hash 19327 pgp0 19533 odcau 19541 sylow2a 19556 sylow3lem6 19569 prmcyg 19831 gsumsnfd 19888 ablfac1eulem 20011 ablfac1eu 20012 pgpfaclem2 20021 prmgrpsimpgd 20053 ablsimpgprmd 20054 c0snmhm 20379 0ringdif 20443 0ring01eqbi 20448 rng1nnzr 20691 fta1glem2 26081 fta1blem 26083 fta1lem 26222 vieta1lem2 26226 vieta1 26227 vmappw 27033 umgredgnlp 29081 lfuhgr1v0e 29188 usgr1vr 29189 uvtxnm1nbgr 29338 1hevtxdg1 29441 1egrvtxdg1 29444 lfgrwlkprop 29622 rusgrnumwwlkb0 29908 clwwlknon1le1 30037 eupth2eucrct 30153 fusgreghash2wspv 30271 numclwlk1lem1 30305 ex-hash 30389 0ringsubrg 33209 drngidlhash 33412 prmidl0 33428 qsidomlem1 33430 krull 33457 qsdrng 33475 rlmdim 33612 rgmoddimOLD 33613 lsatdim 33620 zarcmplem 33878 esumcst 34060 cntnevol 34225 coinflippv 34482 ccatmulgnn0dir 34540 ofcccat 34541 lpadlem2 34678 derang0 35163 poimirlem26 37647 poimirlem27 37648 poimirlem28 37649 frlmvscadiccat 42501 |
| Copyright terms: Public domain | W3C validator |