![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12593 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 9040 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 688 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfi 9043 | . . . 4 ⊢ {𝐴} ∈ Fin | |
5 | snfi 9043 | . . . 4 ⊢ {1} ∈ Fin | |
6 | hashen 14309 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
7 | 4, 5, 6 | mp2an 689 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
8 | 3, 7 | sylibr 233 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
9 | fzsn 13546 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
10 | 9 | fveq2d 6888 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
11 | 1nn0 12489 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
12 | hashfz1 14308 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
14 | 10, 13 | eqtr3di 2781 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
16 | 8, 15 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {csn 4623 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ≈ cen 8935 Fincfn 8938 1c1 11110 ℕ0cn0 12473 ℤcz 12559 ...cfz 13487 ♯chash 14292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-hash 14293 |
This theorem is referenced by: hashen1 14332 hashrabrsn 14334 hashrabsn01 14335 hashunsng 14354 hashunsngx 14355 hashprg 14357 elprchashprn2 14358 hashdifsn 14376 hashsn01 14378 hash1snb 14381 hashmap 14397 hashfun 14399 hashbclem 14414 hashbc 14415 hashf1 14421 hash2prde 14434 hash2pwpr 14440 hashge2el2dif 14444 hashdifsnp1 14460 s1len 14559 ackbijnn 15777 phicl2 16707 dfphi2 16713 vdwlem8 16927 ramcl 16968 cshwshashnsame 17043 efmnd1hash 18814 symg1hash 19306 pgp0 19513 odcau 19521 sylow2a 19536 sylow3lem6 19549 prmcyg 19811 gsumsnfd 19868 ablfac1eulem 19991 ablfac1eu 19992 pgpfaclem2 20001 prmgrpsimpgd 20033 ablsimpgprmd 20034 c0snmhm 20362 0ringdif 20424 0ring01eqbi 20429 rng1nnzr 20623 fta1glem2 26053 fta1blem 26055 fta1lem 26192 vieta1lem2 26196 vieta1 26197 vmappw 26998 umgredgnlp 28910 lfuhgr1v0e 29014 usgr1vr 29015 uvtxnm1nbgr 29164 1hevtxdg1 29267 1egrvtxdg1 29270 lfgrwlkprop 29448 rusgrnumwwlkb0 29729 clwwlknon1le1 29858 eupth2eucrct 29974 fusgreghash2wspv 30092 numclwlk1lem1 30126 ex-hash 30210 0ringsubrg 32882 drngidlhash 33057 prmidl0 33074 qsidomlem1 33076 krull 33099 qsdrng 33116 rlmdim 33211 rgmoddimOLD 33212 lsatdim 33219 zarcmplem 33390 esumcst 33590 cntnevol 33755 coinflippv 34011 ccatmulgnn0dir 34082 ofcccat 34083 lpadlem2 34220 derang0 34687 poimirlem26 37026 poimirlem27 37027 poimirlem28 37028 frlmvscadiccat 41623 |
Copyright terms: Public domain | W3C validator |