![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12592 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 9041 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfi 9044 | . . . 4 ⊢ {𝐴} ∈ Fin | |
5 | snfi 9044 | . . . 4 ⊢ {1} ∈ Fin | |
6 | hashen 14307 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
8 | 3, 7 | sylibr 233 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
9 | fzsn 13543 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
10 | 9 | fveq2d 6896 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
11 | 1nn0 12488 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
12 | hashfz1 14306 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
14 | 10, 13 | eqtr3di 2788 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
16 | 8, 15 | eqtrdi 2789 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {csn 4629 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 ≈ cen 8936 Fincfn 8939 1c1 11111 ℕ0cn0 12472 ℤcz 12558 ...cfz 13484 ♯chash 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: hashen1 14330 hashrabrsn 14332 hashrabsn01 14333 hashunsng 14352 hashunsngx 14353 hashprg 14355 elprchashprn2 14356 hashdifsn 14374 hashsn01 14376 hash1snb 14379 hashmap 14395 hashfun 14397 hashbclem 14411 hashbc 14412 hashf1 14418 hash2prde 14431 hash2pwpr 14437 hashge2el2dif 14441 hashdifsnp1 14457 s1len 14556 ackbijnn 15774 phicl2 16701 dfphi2 16707 vdwlem8 16921 ramcl 16962 cshwshashnsame 17037 efmnd1hash 18773 symg1hash 19257 pgp0 19464 odcau 19472 sylow2a 19487 sylow3lem6 19500 prmcyg 19762 gsumsnfd 19819 ablfac1eulem 19942 ablfac1eu 19943 pgpfaclem2 19952 prmgrpsimpgd 19984 ablsimpgprmd 19985 0ring01eqbi 20307 rng1nnzr 20396 fta1glem2 25684 fta1blem 25686 fta1lem 25820 vieta1lem2 25824 vieta1 25825 vmappw 26620 umgredgnlp 28407 lfuhgr1v0e 28511 usgr1vr 28512 uvtxnm1nbgr 28661 1hevtxdg1 28763 1egrvtxdg1 28766 lfgrwlkprop 28944 rusgrnumwwlkb0 29225 clwwlknon1le1 29354 eupth2eucrct 29470 fusgreghash2wspv 29588 numclwlk1lem1 29622 ex-hash 29706 0ringsubrg 32379 drngidlhash 32552 prmidl0 32569 qsidomlem1 32571 krull 32594 qsdrng 32611 rlmdim 32694 rgmoddimOLD 32695 lsatdim 32702 zarcmplem 32861 esumcst 33061 cntnevol 33226 coinflippv 33482 ccatmulgnn0dir 33553 ofcccat 33554 lpadlem2 33692 derang0 34160 poimirlem26 36514 poimirlem27 36515 poimirlem28 36516 frlmvscadiccat 41080 0ringdif 46644 c0snmhm 46714 |
Copyright terms: Public domain | W3C validator |