Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashsng | Structured version Visualization version GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12280 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 8785 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfi 8788 | . . . 4 ⊢ {𝐴} ∈ Fin | |
5 | snfi 8788 | . . . 4 ⊢ {1} ∈ Fin | |
6 | hashen 13989 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
7 | 4, 5, 6 | mp2an 688 | . . 3 ⊢ ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}) |
8 | 3, 7 | sylibr 233 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
9 | fzsn 13227 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
10 | 9 | fveq2d 6760 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
11 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
12 | hashfz1 13988 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
14 | 10, 13 | eqtr3di 2794 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
15 | 1, 14 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
16 | 8, 15 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ≈ cen 8688 Fincfn 8691 1c1 10803 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: hashen1 14013 hashrabrsn 14015 hashrabsn01 14016 hashunsng 14035 hashunsngx 14036 hashprg 14038 elprchashprn2 14039 hashdifsn 14057 hashsn01 14059 hash1snb 14062 hashmap 14078 hashfun 14080 hashbclem 14092 hashbc 14093 hashf1 14099 hash2prde 14112 hash2pwpr 14118 hashge2el2dif 14122 hashdifsnp1 14138 s1len 14239 ackbijnn 15468 phicl2 16397 dfphi2 16403 vdwlem8 16617 ramcl 16658 cshwshashnsame 16733 efmnd1hash 18446 symg1hash 18912 pgp0 19116 odcau 19124 sylow2a 19139 sylow3lem6 19152 prmcyg 19410 gsumsnfd 19467 ablfac1eulem 19590 ablfac1eu 19591 pgpfaclem2 19600 prmgrpsimpgd 19632 ablsimpgprmd 19633 0ring01eqbi 20457 rng1nnzr 20458 fta1glem2 25236 fta1blem 25238 fta1lem 25372 vieta1lem2 25376 vieta1 25377 vmappw 26170 umgredgnlp 27420 lfuhgr1v0e 27524 usgr1vr 27525 uvtxnm1nbgr 27674 1hevtxdg1 27776 1egrvtxdg1 27779 lfgrwlkprop 27957 rusgrnumwwlkb0 28237 clwwlknon1le1 28366 eupth2eucrct 28482 fusgreghash2wspv 28600 numclwlk1lem1 28634 ex-hash 28718 prmidl0 31528 qsidomlem1 31530 krull 31545 rgmoddim 31595 lsatdim 31602 zarcmplem 31733 esumcst 31931 cntnevol 32096 coinflippv 32350 ccatmulgnn0dir 32421 ofcccat 32422 lpadlem2 32560 derang0 33031 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 frlmvscadiccat 40163 0ringdif 45316 c0snmhm 45361 |
Copyright terms: Public domain | W3C validator |