Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngfmul-rN Structured version   Visualization version   GIF version

Theorem erngfmul-rN 39027
Description: Ring multiplication operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
erngset.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
erng.m-r · = (.r𝐷)
Assertion
Ref Expression
erngfmul-rN ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)))
Distinct variable groups:   𝑡,𝑠,𝐾   𝑊,𝑠,𝑡   𝐸,𝑠,𝑡
Allowed substitution hints:   𝐷(𝑡,𝑠)   𝑇(𝑡,𝑠)   · (𝑡,𝑠)   𝐻(𝑡,𝑠)   𝑉(𝑡,𝑠)

Proof of Theorem erngfmul-rN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erngset.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 erngset.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngset.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 erngset.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
51, 2, 3, 4erngset-rN 39022 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
65fveq2d 6808 . 2 ((𝐾𝑉𝑊𝐻) → (.r𝐷) = (.r‘{⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩}))
7 erng.m-r . 2 · = (.r𝐷)
83fvexi 6818 . . . 4 𝐸 ∈ V
98, 8mpoex 7952 . . 3 (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)) ∈ V
10 eqid 2736 . . . 4 {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩}
1110rngmulr 17060 . . 3 ((𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)) ∈ V → (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)) = (.r‘{⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩}))
129, 11ax-mp 5 . 2 (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)) = (.r‘{⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
136, 7, 123eqtr4g 2801 1 ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  {ctp 4569  cop 4571  cmpt 5164  ccom 5604  cfv 6458  cmpo 7309  ndxcnx 16943  Basecbs 16961  +gcplusg 17011  .rcmulr 17012  LHypclh 38198  LTrncltrn 38315  TEndoctendo 38966  EDRingRcedring-rN 38968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-fz 13290  df-struct 16897  df-slot 16932  df-ndx 16944  df-base 16962  df-plusg 17024  df-mulr 17025  df-edring-rN 38970
This theorem is referenced by:  erngmul-rN  39028  erngdvlem3-rN  39212  erngdvlem4-rN  39213
  Copyright terms: Public domain W3C validator