MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzenom Structured version   Visualization version   GIF version

Theorem uzenom 13684
Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
uzinf.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzenom (𝑀 ∈ ℤ → 𝑍 ≈ ω)

Proof of Theorem uzenom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uzinf.1 . . . 4 𝑍 = (ℤ𝑀)
2 fveq2 6774 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
31, 2eqtrid 2790 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑍 = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
43breq1d 5084 . 2 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑍 ≈ ω ↔ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ≈ ω))
5 omex 9401 . . . 4 ω ∈ V
6 fvex 6787 . . . 4 (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
7 0z 12330 . . . . . 6 0 ∈ ℤ
87elimel 4528 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
9 eqid 2738 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
108, 9om2uzf1oi 13673 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω):ω–1-1-onto→(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
11 f1oen2g 8756 . . . 4 ((ω ∈ V ∧ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω):ω–1-1-onto→(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))) → ω ≈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
125, 6, 10, 11mp3an 1460 . . 3 ω ≈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
1312ensymi 8790 . 2 (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ≈ ω
144, 13dedth 4517 1 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459   class class class wbr 5074  cmpt 5157  cres 5591  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  cen 8730  0cc0 10871  1c1 10872   + caddc 10874  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  uzinf  13685  iscmet3  24457
  Copyright terms: Public domain W3C validator