MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzenom Structured version   Visualization version   GIF version

Theorem uzenom 14015
Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
uzinf.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzenom (𝑀 ∈ ℤ → 𝑍 ≈ ω)

Proof of Theorem uzenom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uzinf.1 . . . 4 𝑍 = (ℤ𝑀)
2 fveq2 6920 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
31, 2eqtrid 2792 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑍 = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
43breq1d 5176 . 2 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑍 ≈ ω ↔ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ≈ ω))
5 omex 9712 . . . 4 ω ∈ V
6 fvex 6933 . . . 4 (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
7 0z 12650 . . . . . 6 0 ∈ ℤ
87elimel 4617 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
9 eqid 2740 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
108, 9om2uzf1oi 14004 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω):ω–1-1-onto→(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
11 f1oen2g 9028 . . . 4 ((ω ∈ V ∧ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω):ω–1-1-onto→(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))) → ω ≈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
125, 6, 10, 11mp3an 1461 . . 3 ω ≈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
1312ensymi 9064 . 2 (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) ≈ ω
144, 13dedth 4606 1 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548   class class class wbr 5166  cmpt 5249  cres 5702  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  ωcom 7903  reccrdg 8465  cen 9000  0cc0 11184  1c1 11185   + caddc 11187  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904
This theorem is referenced by:  uzinf  14016  iscmet3  25346
  Copyright terms: Public domain W3C validator