MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonclwlknonen Structured version   Visualization version   GIF version

Theorem clwwlknonclwlknonen 29613
Description: The sets of the two representations of closed walks of a fixed positive length on a fixed vertex are equinumerous. (Contributed by AV, 27-May-2022.) (Proof shortened by AV, 3-Nov-2022.)
Assertion
Ref Expression
clwwlknonclwlknonen ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,𝑋

Proof of Theorem clwwlknonclwlknonen
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . 3 (ClWalksβ€˜πΊ) ∈ V
21rabex 5332 . 2 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∈ V
3 ovex 7441 . 2 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V
4 eqid 2732 . . 3 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
5 eqid 2732 . . 3 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
6 eqid 2732 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
74, 5, 6clwwlknonclwlknonf1o 29612 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
8 f1oen2g 8963 . 2 (({𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∈ V ∧ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V ∧ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
92, 3, 7, 8mp3an12i 1465 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   class class class wbr 5148   ↦ cmpt 5231  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973   β‰ˆ cen 8935  0cc0 11109  β„•cn 12211  β™―chash 14289   prefix cpfx 14619  Vtxcvtx 28253  USPGraphcuspgr 28405  ClWalkscclwlks 29024  ClWWalksNOncclwwlknon 29337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-lsw 14512  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-edg 28305  df-uhgr 28315  df-upgr 28339  df-uspgr 28407  df-wlks 28853  df-clwlks 29025  df-clwwlk 29232  df-clwwlkn 29275  df-clwwlknon 29338
This theorem is referenced by:  clwlknon2num  29618  numclwlk1lem2  29620
  Copyright terms: Public domain W3C validator