| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlken | Structured version Visualization version GIF version | ||
| Description: The set of the nonempty closed walks and the set of closed walks as word are equinumerous in a simple pseudograph. (Contributed by AV, 25-May-2022.) (Proof shortened by AV, 4-Nov-2022.) |
| Ref | Expression |
|---|---|
| clwlkclwwlken | ⊢ (𝐺 ∈ USPGraph → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ≈ (ClWWalks‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . 3 ⊢ (ClWalks‘𝐺) ∈ V | |
| 2 | 1 | rabex 5279 | . 2 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ∈ V |
| 3 | fvex 6841 | . 2 ⊢ (ClWWalks‘𝐺) ∈ V | |
| 4 | 2fveq3 6833 | . . . . 5 ⊢ (𝑤 = 𝑢 → (♯‘(1st ‘𝑤)) = (♯‘(1st ‘𝑢))) | |
| 5 | 4 | breq2d 5105 | . . . 4 ⊢ (𝑤 = 𝑢 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ (♯‘(1st ‘𝑢)))) |
| 6 | 5 | cbvrabv 3406 | . . 3 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} = {𝑢 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑢))} |
| 7 | fveq2 6828 | . . . . 5 ⊢ (𝑑 = 𝑐 → (2nd ‘𝑑) = (2nd ‘𝑐)) | |
| 8 | 2fveq3 6833 | . . . . . 6 ⊢ (𝑑 = 𝑐 → (♯‘(2nd ‘𝑑)) = (♯‘(2nd ‘𝑐))) | |
| 9 | 8 | oveq1d 7367 | . . . . 5 ⊢ (𝑑 = 𝑐 → ((♯‘(2nd ‘𝑑)) − 1) = ((♯‘(2nd ‘𝑐)) − 1)) |
| 10 | 7, 9 | oveq12d 7370 | . . . 4 ⊢ (𝑑 = 𝑐 → ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1)) = ((2nd ‘𝑐) prefix ((♯‘(2nd ‘𝑐)) − 1))) |
| 11 | 10 | cbvmptv 5197 | . . 3 ⊢ (𝑑 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑐) prefix ((♯‘(2nd ‘𝑐)) − 1))) |
| 12 | 6, 11 | clwlkclwwlkf1o 29993 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝑑 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}–1-1-onto→(ClWWalks‘𝐺)) |
| 13 | f1oen2g 8897 | . 2 ⊢ (({𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ∈ V ∧ (ClWWalks‘𝐺) ∈ V ∧ (𝑑 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}–1-1-onto→(ClWWalks‘𝐺)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ≈ (ClWWalks‘𝐺)) | |
| 14 | 2, 3, 12, 13 | mp3an12i 1467 | 1 ⊢ (𝐺 ∈ USPGraph → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ≈ (ClWWalks‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {crab 3396 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 ≈ cen 8872 1c1 11014 ≤ cle 11154 − cmin 11351 ♯chash 14239 prefix cpfx 14580 USPGraphcuspgr 29128 ClWalkscclwlks 29750 ClWWalkscclwwlk 29963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-wlks 29580 df-clwlks 29751 df-clwwlk 29964 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |