MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlken Structured version   Visualization version   GIF version

Theorem clwlkclwwlken 29809
Description: The set of the nonempty closed walks and the set of closed walks as word are equinumerous in a simple pseudograph. (Contributed by AV, 25-May-2022.) (Proof shortened by AV, 4-Nov-2022.)
Assertion
Ref Expression
clwlkclwwlken (𝐺 ∈ USPGraph β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β‰ˆ (ClWWalksβ€˜πΊ))
Distinct variable group:   𝑀,𝐺

Proof of Theorem clwlkclwwlken
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . 3 (ClWalksβ€˜πΊ) ∈ V
21rabex 5328 . 2 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∈ V
3 fvex 6904 . 2 (ClWWalksβ€˜πΊ) ∈ V
4 2fveq3 6896 . . . . 5 (𝑀 = 𝑒 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘’)))
54breq2d 5154 . . . 4 (𝑀 = 𝑒 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘’))))
65cbvrabv 3437 . . 3 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑒 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘’))}
7 fveq2 6891 . . . . 5 (𝑑 = 𝑐 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘))
8 2fveq3 6896 . . . . . 6 (𝑑 = 𝑐 β†’ (β™―β€˜(2nd β€˜π‘‘)) = (β™―β€˜(2nd β€˜π‘)))
98oveq1d 7429 . . . . 5 (𝑑 = 𝑐 β†’ ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
107, 9oveq12d 7432 . . . 4 (𝑑 = 𝑐 β†’ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
1110cbvmptv 5255 . . 3 (𝑑 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
126, 11clwlkclwwlkf1o 29808 . 2 (𝐺 ∈ USPGraph β†’ (𝑑 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
13 f1oen2g 8980 . 2 (({𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∈ V ∧ (ClWWalksβ€˜πΊ) ∈ V ∧ (𝑑 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ)) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β‰ˆ (ClWWalksβ€˜πΊ))
142, 3, 12, 13mp3an12i 1462 1 (𝐺 ∈ USPGraph β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β‰ˆ (ClWWalksβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2099  {crab 3427  Vcvv 3469   class class class wbr 5142   ↦ cmpt 5225  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986   β‰ˆ cen 8952  1c1 11131   ≀ cle 11271   βˆ’ cmin 11466  β™―chash 14313   prefix cpfx 14644  USPGraphcuspgr 28948  ClWalkscclwlks 29571  ClWWalkscclwwlk 29778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-lsw 14537  df-concat 14545  df-s1 14570  df-substr 14615  df-pfx 14645  df-edg 28848  df-uhgr 28858  df-upgr 28882  df-uspgr 28950  df-wlks 29400  df-clwlks 29572  df-clwwlk 29779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator