| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlken | Structured version Visualization version GIF version | ||
| Description: The set of the nonempty closed walks and the set of closed walks as word are equinumerous in a simple pseudograph. (Contributed by AV, 25-May-2022.) (Proof shortened by AV, 4-Nov-2022.) |
| Ref | Expression |
|---|---|
| clwlkclwwlken | ⊢ (𝐺 ∈ USPGraph → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ≈ (ClWWalks‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6839 | . . 3 ⊢ (ClWalks‘𝐺) ∈ V | |
| 2 | 1 | rabex 5281 | . 2 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ∈ V |
| 3 | fvex 6839 | . 2 ⊢ (ClWWalks‘𝐺) ∈ V | |
| 4 | 2fveq3 6831 | . . . . 5 ⊢ (𝑤 = 𝑢 → (♯‘(1st ‘𝑤)) = (♯‘(1st ‘𝑢))) | |
| 5 | 4 | breq2d 5107 | . . . 4 ⊢ (𝑤 = 𝑢 → (1 ≤ (♯‘(1st ‘𝑤)) ↔ 1 ≤ (♯‘(1st ‘𝑢)))) |
| 6 | 5 | cbvrabv 3407 | . . 3 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} = {𝑢 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑢))} |
| 7 | fveq2 6826 | . . . . 5 ⊢ (𝑑 = 𝑐 → (2nd ‘𝑑) = (2nd ‘𝑐)) | |
| 8 | 2fveq3 6831 | . . . . . 6 ⊢ (𝑑 = 𝑐 → (♯‘(2nd ‘𝑑)) = (♯‘(2nd ‘𝑐))) | |
| 9 | 8 | oveq1d 7368 | . . . . 5 ⊢ (𝑑 = 𝑐 → ((♯‘(2nd ‘𝑑)) − 1) = ((♯‘(2nd ‘𝑐)) − 1)) |
| 10 | 7, 9 | oveq12d 7371 | . . . 4 ⊢ (𝑑 = 𝑐 → ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1)) = ((2nd ‘𝑐) prefix ((♯‘(2nd ‘𝑐)) − 1))) |
| 11 | 10 | cbvmptv 5199 | . . 3 ⊢ (𝑑 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑐) prefix ((♯‘(2nd ‘𝑐)) − 1))) |
| 12 | 6, 11 | clwlkclwwlkf1o 29973 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝑑 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}–1-1-onto→(ClWWalks‘𝐺)) |
| 13 | f1oen2g 8901 | . 2 ⊢ (({𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ∈ V ∧ (ClWWalks‘𝐺) ∈ V ∧ (𝑑 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ ((2nd ‘𝑑) prefix ((♯‘(2nd ‘𝑑)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))}–1-1-onto→(ClWWalks‘𝐺)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ≈ (ClWWalks‘𝐺)) | |
| 14 | 2, 3, 12, 13 | mp3an12i 1467 | 1 ⊢ (𝐺 ∈ USPGraph → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ≈ (ClWWalks‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3396 Vcvv 3438 class class class wbr 5095 ↦ cmpt 5176 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ≈ cen 8876 1c1 11029 ≤ cle 11169 − cmin 11365 ♯chash 14255 prefix cpfx 14595 USPGraphcuspgr 29111 ClWalkscclwlks 29733 ClWWalkscclwwlk 29943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-edg 29011 df-uhgr 29021 df-upgr 29045 df-uspgr 29113 df-wlks 29563 df-clwlks 29734 df-clwwlk 29944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |