| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unfilem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| unfilem3 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7361 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ ω, 𝐴, ∅)) | |
| 3 | 1, 2 | difeq12d 4076 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +o 𝐵) ∖ 𝐴) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) |
| 4 | 3 | breq2d 5107 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))) |
| 5 | id 22 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅)) | |
| 6 | oveq2 7362 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) | |
| 7 | 6 | difeq1d 4074 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) |
| 8 | 5, 7 | breq12d 5108 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ↔ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))) |
| 9 | peano1 7827 | . . . 4 ⊢ ∅ ∈ ω | |
| 10 | 9 | elimel 4546 | . . 3 ⊢ if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω |
| 11 | ovex 7387 | . . . 4 ⊢ (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∈ V | |
| 12 | 11 | difexi 5272 | . . 3 ⊢ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V |
| 13 | 9 | elimel 4546 | . . . 4 ⊢ if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω |
| 14 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) = (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) | |
| 15 | 13, 10, 14 | unfilem2 9199 | . . 3 ⊢ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) |
| 16 | f1oen2g 8899 | . . 3 ⊢ ((if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω ∧ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V ∧ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) → if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) | |
| 17 | 10, 12, 15, 16 | mp3an 1463 | . 2 ⊢ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) |
| 18 | 4, 8, 17 | dedth2h 4536 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∅c0 4282 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 –1-1-onto→wf1o 6487 (class class class)co 7354 ωcom 7804 +o coa 8390 ≈ cen 8874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-oadd 8397 df-en 8878 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |