Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unfilem3 | Structured version Visualization version GIF version |
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
unfilem3 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) | |
2 | id 22 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ ω, 𝐴, ∅)) | |
3 | 1, 2 | difeq12d 4038 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +o 𝐵) ∖ 𝐴) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) |
4 | 3 | breq2d 5065 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))) |
5 | id 22 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅)) | |
6 | oveq2 7221 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) | |
7 | 6 | difeq1d 4036 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) |
8 | 5, 7 | breq12d 5066 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ↔ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))) |
9 | peano1 7667 | . . . 4 ⊢ ∅ ∈ ω | |
10 | 9 | elimel 4508 | . . 3 ⊢ if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω |
11 | ovex 7246 | . . . 4 ⊢ (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∈ V | |
12 | 11 | difexi 5221 | . . 3 ⊢ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V |
13 | 9 | elimel 4508 | . . . 4 ⊢ if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω |
14 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) = (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) | |
15 | 13, 10, 14 | unfilem2 8936 | . . 3 ⊢ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) |
16 | f1oen2g 8645 | . . 3 ⊢ ((if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω ∧ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V ∧ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) → if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) | |
17 | 10, 12, 15, 16 | mp3an 1463 | . 2 ⊢ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) |
18 | 4, 8, 17 | dedth2h 4498 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∖ cdif 3863 ∅c0 4237 ifcif 4439 class class class wbr 5053 ↦ cmpt 5135 –1-1-onto→wf1o 6379 (class class class)co 7213 ωcom 7644 +o coa 8199 ≈ cen 8623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-oadd 8206 df-en 8627 |
This theorem is referenced by: unfiOLD 8938 |
Copyright terms: Public domain | W3C validator |