| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unfilem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| unfilem3 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ ω, 𝐴, ∅)) | |
| 3 | 1, 2 | difeq12d 4090 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +o 𝐵) ∖ 𝐴) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) |
| 4 | 3 | breq2d 5119 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))) |
| 5 | id 22 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅)) | |
| 6 | oveq2 7395 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) | |
| 7 | 6 | difeq1d 4088 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) |
| 8 | 5, 7 | breq12d 5120 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ↔ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))) |
| 9 | peano1 7865 | . . . 4 ⊢ ∅ ∈ ω | |
| 10 | 9 | elimel 4558 | . . 3 ⊢ if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω |
| 11 | ovex 7420 | . . . 4 ⊢ (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∈ V | |
| 12 | 11 | difexi 5285 | . . 3 ⊢ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V |
| 13 | 9 | elimel 4558 | . . . 4 ⊢ if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω |
| 14 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) = (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) | |
| 15 | 13, 10, 14 | unfilem2 9255 | . . 3 ⊢ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) |
| 16 | f1oen2g 8940 | . . 3 ⊢ ((if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω ∧ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V ∧ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) → if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) | |
| 17 | 10, 12, 15, 16 | mp3an 1463 | . 2 ⊢ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) |
| 18 | 4, 8, 17 | dedth2h 4548 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 –1-1-onto→wf1o 6510 (class class class)co 7387 ωcom 7842 +o coa 8431 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 df-en 8919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |