MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem3 Structured version   Visualization version   GIF version

Theorem unfilem3 9263
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
unfilem3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴))

Proof of Theorem unfilem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵))
2 id 22 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ ω, 𝐴, ∅))
31, 2difeq12d 4093 . . 3 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +o 𝐵) ∖ 𝐴) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))
43breq2d 5122 . 2 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅))))
5 id 22 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅))
6 oveq2 7398 . . . 4 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)))
76difeq1d 4091 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))
85, 7breq12d 5123 . 2 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ↔ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))))
9 peano1 7868 . . . 4 ∅ ∈ ω
109elimel 4561 . . 3 if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω
11 ovex 7423 . . . 4 (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∈ V
1211difexi 5288 . . 3 ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V
139elimel 4561 . . . 4 if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω
14 eqid 2730 . . . 4 (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)) = (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥))
1513, 10, 14unfilem2 9262 . . 3 (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))
16 f1oen2g 8943 . . 3 ((if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω ∧ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V ∧ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) → if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))
1710, 12, 15, 16mp3an 1463 . 2 if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))
184, 8, 17dedth2h 4551 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  c0 4299  ifcif 4491   class class class wbr 5110  cmpt 5191  1-1-ontowf1o 6513  (class class class)co 7390  ωcom 7845   +o coa 8434  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441  df-en 8922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator