![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dlwwlknondlwlknonen | Structured version Visualization version GIF version |
Description: The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022.) (Proof shortened by AV, 3-Nov-2022.) |
Ref | Expression |
---|---|
dlwwlknondlwlknonbij.v | β’ π = (VtxβπΊ) |
dlwwlknondlwlknonbij.w | β’ π = {π€ β (ClWalksβπΊ) β£ ((β―β(1st βπ€)) = π β§ ((2nd βπ€)β0) = π β§ ((2nd βπ€)β(π β 2)) = π)} |
dlwwlknondlwlknonbij.d | β’ π· = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π} |
Ref | Expression |
---|---|
dlwwlknondlwlknonen | β’ ((πΊ β USPGraph β§ π β π β§ π β (β€β₯β2)) β π β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dlwwlknondlwlknonbij.w | . . 3 β’ π = {π€ β (ClWalksβπΊ) β£ ((β―β(1st βπ€)) = π β§ ((2nd βπ€)β0) = π β§ ((2nd βπ€)β(π β 2)) = π)} | |
2 | fvex 6907 | . . 3 β’ (ClWalksβπΊ) β V | |
3 | 1, 2 | rabex2 5336 | . 2 β’ π β V |
4 | dlwwlknondlwlknonbij.d | . . 3 β’ π· = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π} | |
5 | ovex 7450 | . . 3 β’ (π(ClWWalksNOnβπΊ)π) β V | |
6 | 4, 5 | rabex2 5336 | . 2 β’ π· β V |
7 | dlwwlknondlwlknonbij.v | . . 3 β’ π = (VtxβπΊ) | |
8 | eqid 2725 | . . 3 β’ (π β π β¦ ((2nd βπ) prefix (β―β(1st βπ)))) = (π β π β¦ ((2nd βπ) prefix (β―β(1st βπ)))) | |
9 | 7, 1, 4, 8 | dlwwlknondlwlknonf1o 30231 | . 2 β’ ((πΊ β USPGraph β§ π β π β§ π β (β€β₯β2)) β (π β π β¦ ((2nd βπ) prefix (β―β(1st βπ)))):πβ1-1-ontoβπ·) |
10 | f1oen2g 8987 | . 2 β’ ((π β V β§ π· β V β§ (π β π β¦ ((2nd βπ) prefix (β―β(1st βπ)))):πβ1-1-ontoβπ·) β π β π·) | |
11 | 3, 6, 9, 10 | mp3an12i 1461 | 1 β’ ((πΊ β USPGraph β§ π β π β§ π β (β€β₯β2)) β π β π·) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 class class class wbr 5148 β¦ cmpt 5231 β1-1-ontoβwf1o 6546 βcfv 6547 (class class class)co 7417 1st c1st 7990 2nd c2nd 7991 β cen 8959 0cc0 11138 β cmin 11474 2c2 12297 β€β₯cuz 12852 β―chash 14321 prefix cpfx 14652 Vtxcvtx 28865 USPGraphcuspgr 29017 ClWalkscclwlks 29640 ClWWalksNOncclwwlknon 29953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-lsw 14545 df-concat 14553 df-s1 14578 df-substr 14623 df-pfx 14653 df-edg 28917 df-uhgr 28927 df-upgr 28951 df-uspgr 29019 df-wlks 29469 df-clwlks 29641 df-clwwlk 29848 df-clwwlkn 29891 df-clwwlknon 29954 |
This theorem is referenced by: numclwlk1lem2 30236 |
Copyright terms: Public domain | W3C validator |