MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonen Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonen 30232
Description: The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
dlwwlknondlwlknonbij.v 𝑉 = (Vtxβ€˜πΊ)
dlwwlknondlwlknonbij.w π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
dlwwlknondlwlknonbij.d 𝐷 = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
Assertion
Ref Expression
dlwwlknondlwlknonen ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ π‘Š β‰ˆ 𝐷)
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,𝑋
Allowed substitution hints:   𝐷(𝑀)   𝑉(𝑀)   π‘Š(𝑀)

Proof of Theorem dlwwlknondlwlknonen
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 dlwwlknondlwlknonbij.w . . 3 π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
2 fvex 6907 . . 3 (ClWalksβ€˜πΊ) ∈ V
31, 2rabex2 5336 . 2 π‘Š ∈ V
4 dlwwlknondlwlknonbij.d . . 3 𝐷 = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
5 ovex 7450 . . 3 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V
64, 5rabex2 5336 . 2 𝐷 ∈ V
7 dlwwlknondlwlknonbij.v . . 3 𝑉 = (Vtxβ€˜πΊ)
8 eqid 2725 . . 3 (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
97, 1, 4, 8dlwwlknondlwlknonf1o 30231 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):π‘Šβ€“1-1-onto→𝐷)
10 f1oen2g 8987 . 2 ((π‘Š ∈ V ∧ 𝐷 ∈ V ∧ (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):π‘Šβ€“1-1-onto→𝐷) β†’ π‘Š β‰ˆ 𝐷)
113, 6, 9, 10mp3an12i 1461 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ π‘Š β‰ˆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   class class class wbr 5148   ↦ cmpt 5231  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991   β‰ˆ cen 8959  0cc0 11138   βˆ’ cmin 11474  2c2 12297  β„€β‰₯cuz 12852  β™―chash 14321   prefix cpfx 14652  Vtxcvtx 28865  USPGraphcuspgr 29017  ClWalkscclwlks 29640  ClWWalksNOncclwwlknon 29953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-edg 28917  df-uhgr 28927  df-upgr 28951  df-uspgr 29019  df-wlks 29469  df-clwlks 29641  df-clwwlk 29848  df-clwwlkn 29891  df-clwwlknon 29954
This theorem is referenced by:  numclwlk1lem2  30236
  Copyright terms: Public domain W3C validator