MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfconj Structured version   Visualization version   GIF version

Theorem pmtrfconj 19380
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfconj ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)

Proof of Theorem pmtrfconj
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
31, 2pmtrfb 19379 . . . 4 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
43simp1bi 1145 . . 3 (𝐹𝑅𝐷 ∈ V)
54adantr 480 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐷 ∈ V)
6 simpr 484 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
71, 2pmtrff1o 19377 . . . . 5 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
87adantr 480 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷1-1-onto𝐷)
9 f1oco 6791 . . . 4 ((𝐺:𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
106, 8, 9syl2anc 584 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
11 f1ocnv 6780 . . . 4 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷)
1211adantl 481 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
13 f1oco 6791 . . 3 (((𝐺𝐹):𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
1410, 12, 13syl2anc 584 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
15 f1of 6768 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
167, 15syl 17 . . . . . 6 (𝐹𝑅𝐹:𝐷𝐷)
1716adantr 480 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷𝐷)
18 f1omvdconj 19360 . . . . 5 ((𝐹:𝐷𝐷𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
1917, 6, 18syl2anc 584 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
20 f1of1 6767 . . . . . 6 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1𝐷)
2120adantl 481 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1𝐷)
22 difss 4085 . . . . . . 7 (𝐹 ∖ I ) ⊆ 𝐹
23 dmss 5846 . . . . . . 7 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2422, 23ax-mp 5 . . . . . 6 dom (𝐹 ∖ I ) ⊆ dom 𝐹
2524, 17fssdm 6675 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ⊆ 𝐷)
265, 25ssexd 5264 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ∈ V)
27 f1imaeng 8943 . . . . 5 ((𝐺:𝐷1-1𝐷 ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ∈ V) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
2821, 25, 26, 27syl3anc 1373 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
2919, 28eqbrtrd 5115 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ))
303simp3bi 1147 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
3130adantr 480 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ≈ 2o)
32 entr 8935 . . 3 ((dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o)
3329, 31, 32syl2anc 584 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o)
341, 2pmtrfb 19379 . 2 (((𝐺𝐹) ∘ 𝐺) ∈ 𝑅 ↔ (𝐷 ∈ V ∧ ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷 ∧ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o))
355, 14, 33, 34syl3anbrc 1344 1 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  wss 3898   class class class wbr 5093   I cid 5513  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  ccom 5623  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  2oc2o 8385  cen 8872  pmTrspcpmtr 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pmtr 19356
This theorem is referenced by:  psgnunilem1  19407
  Copyright terms: Public domain W3C validator