MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfconj Structured version   Visualization version   GIF version

Theorem pmtrfconj 19499
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfconj ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)

Proof of Theorem pmtrfconj
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
31, 2pmtrfb 19498 . . . 4 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
43simp1bi 1144 . . 3 (𝐹𝑅𝐷 ∈ V)
54adantr 480 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐷 ∈ V)
6 simpr 484 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
71, 2pmtrff1o 19496 . . . . 5 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
87adantr 480 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷1-1-onto𝐷)
9 f1oco 6872 . . . 4 ((𝐺:𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
106, 8, 9syl2anc 584 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
11 f1ocnv 6861 . . . 4 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷)
1211adantl 481 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
13 f1oco 6872 . . 3 (((𝐺𝐹):𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
1410, 12, 13syl2anc 584 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
15 f1of 6849 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
167, 15syl 17 . . . . . 6 (𝐹𝑅𝐹:𝐷𝐷)
1716adantr 480 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷𝐷)
18 f1omvdconj 19479 . . . . 5 ((𝐹:𝐷𝐷𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
1917, 6, 18syl2anc 584 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
20 f1of1 6848 . . . . . 6 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1𝐷)
2120adantl 481 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1𝐷)
22 difss 4146 . . . . . . 7 (𝐹 ∖ I ) ⊆ 𝐹
23 dmss 5916 . . . . . . 7 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2422, 23ax-mp 5 . . . . . 6 dom (𝐹 ∖ I ) ⊆ dom 𝐹
2524, 17fssdm 6756 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ⊆ 𝐷)
265, 25ssexd 5330 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ∈ V)
27 f1imaeng 9053 . . . . 5 ((𝐺:𝐷1-1𝐷 ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ∈ V) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
2821, 25, 26, 27syl3anc 1370 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
2919, 28eqbrtrd 5170 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ))
303simp3bi 1146 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
3130adantr 480 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ≈ 2o)
32 entr 9045 . . 3 ((dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o)
3329, 31, 32syl2anc 584 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o)
341, 2pmtrfb 19498 . 2 (((𝐺𝐹) ∘ 𝐺) ∈ 𝑅 ↔ (𝐷 ∈ V ∧ ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷 ∧ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o))
355, 14, 33, 34syl3anbrc 1342 1 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  wss 3963   class class class wbr 5148   I cid 5582  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  ccom 5693  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  2oc2o 8499  cen 8981  pmTrspcpmtr 19474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pmtr 19475
This theorem is referenced by:  psgnunilem1  19526
  Copyright terms: Public domain W3C validator