Proof of Theorem pmtrfconj
| Step | Hyp | Ref
| Expression |
| 1 | | pmtrrn.t |
. . . . 5
⊢ 𝑇 = (pmTrsp‘𝐷) |
| 2 | | pmtrrn.r |
. . . . 5
⊢ 𝑅 = ran 𝑇 |
| 3 | 1, 2 | pmtrfb 19483 |
. . . 4
⊢ (𝐹 ∈ 𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷–1-1-onto→𝐷 ∧ dom (𝐹 ∖ I ) ≈
2o)) |
| 4 | 3 | simp1bi 1146 |
. . 3
⊢ (𝐹 ∈ 𝑅 → 𝐷 ∈ V) |
| 5 | 4 | adantr 480 |
. 2
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → 𝐷 ∈ V) |
| 6 | | simpr 484 |
. . . 4
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → 𝐺:𝐷–1-1-onto→𝐷) |
| 7 | 1, 2 | pmtrff1o 19481 |
. . . . 5
⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) |
| 8 | 7 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → 𝐹:𝐷–1-1-onto→𝐷) |
| 9 | | f1oco 6871 |
. . . 4
⊢ ((𝐺:𝐷–1-1-onto→𝐷 ∧ 𝐹:𝐷–1-1-onto→𝐷) → (𝐺 ∘ 𝐹):𝐷–1-1-onto→𝐷) |
| 10 | 6, 8, 9 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → (𝐺 ∘ 𝐹):𝐷–1-1-onto→𝐷) |
| 11 | | f1ocnv 6860 |
. . . 4
⊢ (𝐺:𝐷–1-1-onto→𝐷 → ◡𝐺:𝐷–1-1-onto→𝐷) |
| 12 | 11 | adantl 481 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → ◡𝐺:𝐷–1-1-onto→𝐷) |
| 13 | | f1oco 6871 |
. . 3
⊢ (((𝐺 ∘ 𝐹):𝐷–1-1-onto→𝐷 ∧ ◡𝐺:𝐷–1-1-onto→𝐷) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺):𝐷–1-1-onto→𝐷) |
| 14 | 10, 12, 13 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺):𝐷–1-1-onto→𝐷) |
| 15 | | f1of 6848 |
. . . . . . 7
⊢ (𝐹:𝐷–1-1-onto→𝐷 → 𝐹:𝐷⟶𝐷) |
| 16 | 7, 15 | syl 17 |
. . . . . 6
⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷⟶𝐷) |
| 17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → 𝐹:𝐷⟶𝐷) |
| 18 | | f1omvdconj 19464 |
. . . . 5
⊢ ((𝐹:𝐷⟶𝐷 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I ))) |
| 19 | 17, 6, 18 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I ))) |
| 20 | | f1of1 6847 |
. . . . . 6
⊢ (𝐺:𝐷–1-1-onto→𝐷 → 𝐺:𝐷–1-1→𝐷) |
| 21 | 20 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → 𝐺:𝐷–1-1→𝐷) |
| 22 | | difss 4136 |
. . . . . . 7
⊢ (𝐹 ∖ I ) ⊆ 𝐹 |
| 23 | | dmss 5913 |
. . . . . . 7
⊢ ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢ dom
(𝐹 ∖ I ) ⊆ dom
𝐹 |
| 25 | 24, 17 | fssdm 6755 |
. . . . 5
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (𝐹 ∖ I ) ⊆ 𝐷) |
| 26 | 5, 25 | ssexd 5324 |
. . . . 5
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (𝐹 ∖ I ) ∈ V) |
| 27 | | f1imaeng 9054 |
. . . . 5
⊢ ((𝐺:𝐷–1-1→𝐷 ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ∈ V) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I )) |
| 28 | 21, 25, 26, 27 | syl3anc 1373 |
. . . 4
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I )) |
| 29 | 19, 28 | eqbrtrd 5165 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ≈ dom (𝐹 ∖ I )) |
| 30 | 3 | simp3bi 1148 |
. . . 4
⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈
2o) |
| 31 | 30 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (𝐹 ∖ I ) ≈
2o) |
| 32 | | entr 9046 |
. . 3
⊢ ((dom
(((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) →
dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ≈
2o) |
| 33 | 29, 31, 32 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ≈
2o) |
| 34 | 1, 2 | pmtrfb 19483 |
. 2
⊢ (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∈ 𝑅 ↔ (𝐷 ∈ V ∧ ((𝐺 ∘ 𝐹) ∘ ◡𝐺):𝐷–1-1-onto→𝐷 ∧ dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ≈
2o)) |
| 35 | 5, 14, 33, 34 | syl3anbrc 1344 |
1
⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∈ 𝑅) |