MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfconj Structured version   Visualization version   GIF version

Theorem pmtrfconj 19074
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfconj ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)

Proof of Theorem pmtrfconj
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
31, 2pmtrfb 19073 . . . 4 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
43simp1bi 1144 . . 3 (𝐹𝑅𝐷 ∈ V)
54adantr 481 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐷 ∈ V)
6 simpr 485 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
71, 2pmtrff1o 19071 . . . . 5 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
87adantr 481 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷1-1-onto𝐷)
9 f1oco 6739 . . . 4 ((𝐺:𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
106, 8, 9syl2anc 584 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
11 f1ocnv 6728 . . . 4 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷)
1211adantl 482 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
13 f1oco 6739 . . 3 (((𝐺𝐹):𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
1410, 12, 13syl2anc 584 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
15 f1of 6716 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
167, 15syl 17 . . . . . 6 (𝐹𝑅𝐹:𝐷𝐷)
1716adantr 481 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷𝐷)
18 f1omvdconj 19054 . . . . 5 ((𝐹:𝐷𝐷𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
1917, 6, 18syl2anc 584 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
20 f1of1 6715 . . . . . 6 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1𝐷)
2120adantl 482 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1𝐷)
22 difss 4066 . . . . . . 7 (𝐹 ∖ I ) ⊆ 𝐹
23 dmss 5811 . . . . . . 7 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2422, 23ax-mp 5 . . . . . 6 dom (𝐹 ∖ I ) ⊆ dom 𝐹
2524, 17fssdm 6620 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ⊆ 𝐷)
265, 25ssexd 5248 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ∈ V)
27 f1imaeng 8800 . . . . 5 ((𝐺:𝐷1-1𝐷 ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ∈ V) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
2821, 25, 26, 27syl3anc 1370 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
2919, 28eqbrtrd 5096 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ))
303simp3bi 1146 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
3130adantr 481 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ≈ 2o)
32 entr 8792 . . 3 ((dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o)
3329, 31, 32syl2anc 584 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o)
341, 2pmtrfb 19073 . 2 (((𝐺𝐹) ∘ 𝐺) ∈ 𝑅 ↔ (𝐷 ∈ V ∧ ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷 ∧ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2o))
355, 14, 33, 34syl3anbrc 1342 1 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887   class class class wbr 5074   I cid 5488  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  2oc2o 8291  cen 8730  pmTrspcpmtr 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pmtr 19050
This theorem is referenced by:  psgnunilem1  19101
  Copyright terms: Public domain W3C validator