![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumaddf | Structured version Visualization version GIF version |
Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017.) |
Ref | Expression |
---|---|
esumaddf.0 | ⊢ Ⅎ𝑘𝜑 |
esumaddf.a | ⊢ Ⅎ𝑘𝐴 |
esumaddf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumaddf.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumaddf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumaddf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumaddf.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumaddf.a | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | esumaddf.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumaddf.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | esumaddf.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
6 | ge0xaddcl 13474 | . . 3 ⊢ ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞)) | |
7 | 4, 5, 6 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞)) |
8 | xrge0base 32830 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
9 | xrge0plusg 32832 | . . . 4 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
10 | xrge0cmn 21358 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
12 | xrge0tmd 33677 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd) |
14 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘(0[,]+∞) | |
15 | eqid 2725 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
16 | 1, 2, 14, 4, 15 | fmptdF 32523 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
17 | eqid 2725 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
18 | 1, 2, 14, 5, 17 | fmptdF 32523 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
19 | 1, 2, 3, 4 | esumel 33797 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
20 | 1, 2, 3, 5 | esumel 33797 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
21 | 8, 9, 11, 13, 3, 16, 18, 19, 20 | tsmsadd 24095 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶)))) |
22 | eqidd 2726 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
23 | eqidd 2726 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
24 | 1, 2, 3, 4, 5, 22, 23 | offval2f 7700 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) |
25 | 24 | oveq2d 7435 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶)))) |
26 | 21, 25 | eleqtrd 2827 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶)))) |
27 | 1, 2, 3, 7, 26 | esumid 33794 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ↦ cmpt 5232 (class class class)co 7419 ∘f cof 7683 0cc0 11140 +∞cpnf 11277 +𝑒 cxad 13125 [,]cicc 13362 ↾s cress 17212 ℝ*𝑠cxrs 17485 CMndccmn 19747 TopMndctmd 24018 tsums ctsu 24074 Σ*cesum 33777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ioc 13364 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-shft 15050 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-limsup 15451 df-clim 15468 df-rlim 15469 df-sum 15669 df-ef 16047 df-sin 16049 df-cos 16050 df-pi 16052 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-0g 17426 df-gsum 17427 df-topgen 17428 df-pt 17429 df-prds 17432 df-ordt 17486 df-xrs 17487 df-qtop 17492 df-imas 17493 df-xps 17495 df-mre 17569 df-mrc 17570 df-acs 17572 df-ps 18561 df-tsr 18562 df-plusf 18602 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-subrng 20495 df-subrg 20520 df-abv 20709 df-lmod 20757 df-scaf 20758 df-sra 21070 df-rgmod 21071 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lp 23084 df-perf 23085 df-cn 23175 df-cnp 23176 df-haus 23263 df-tx 23510 df-hmeo 23703 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-tmd 24020 df-tgp 24021 df-tsms 24075 df-trg 24108 df-xms 24270 df-ms 24271 df-tms 24272 df-nm 24535 df-ngp 24536 df-nrg 24538 df-nlm 24539 df-ii 24841 df-cncf 24842 df-limc 25839 df-dv 25840 df-log 26535 df-esum 33778 |
This theorem is referenced by: esumlef 33812 omssubadd 34051 |
Copyright terms: Public domain | W3C validator |