![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumaddf | Structured version Visualization version GIF version |
Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017.) |
Ref | Expression |
---|---|
esumaddf.0 | ⊢ Ⅎ𝑘𝜑 |
esumaddf.a | ⊢ Ⅎ𝑘𝐴 |
esumaddf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumaddf.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumaddf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumaddf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumaddf.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumaddf.a | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | esumaddf.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumaddf.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | esumaddf.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
6 | ge0xaddcl 13439 | . . 3 ⊢ ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞)) | |
7 | 4, 5, 6 | syl2anc 585 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞)) |
8 | xrge0base 32186 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
9 | xrge0plusg 32188 | . . . 4 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
10 | xrge0cmn 20987 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
12 | xrge0tmd 32925 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd) |
14 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑘(0[,]+∞) | |
15 | eqid 2733 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
16 | 1, 2, 14, 4, 15 | fmptdF 31881 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
17 | eqid 2733 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
18 | 1, 2, 14, 5, 17 | fmptdF 31881 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
19 | 1, 2, 3, 4 | esumel 33045 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
20 | 1, 2, 3, 5 | esumel 33045 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
21 | 8, 9, 11, 13, 3, 16, 18, 19, 20 | tsmsadd 23651 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶)))) |
22 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
23 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
24 | 1, 2, 3, 4, 5, 22, 23 | offval2f 7685 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) |
25 | 24 | oveq2d 7425 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶)))) |
26 | 21, 25 | eleqtrd 2836 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶)))) |
27 | 1, 2, 3, 7, 26 | esumid 33042 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ↦ cmpt 5232 (class class class)co 7409 ∘f cof 7668 0cc0 11110 +∞cpnf 11245 +𝑒 cxad 13090 [,]cicc 13327 ↾s cress 17173 ℝ*𝑠cxrs 17446 CMndccmn 19648 TopMndctmd 23574 tsums ctsu 23630 Σ*cesum 33025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-sin 16013 df-cos 16014 df-pi 16016 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-ordt 17447 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-ps 18519 df-tsr 18520 df-plusf 18560 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-subrg 20317 df-abv 20425 df-lmod 20473 df-scaf 20474 df-sra 20785 df-rgmod 20786 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-haus 22819 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-tmd 23576 df-tgp 23577 df-tsms 23631 df-trg 23664 df-xms 23826 df-ms 23827 df-tms 23828 df-nm 24091 df-ngp 24092 df-nrg 24094 df-nlm 24095 df-ii 24393 df-cncf 24394 df-limc 25383 df-dv 25384 df-log 26065 df-esum 33026 |
This theorem is referenced by: esumlef 33060 omssubadd 33299 |
Copyright terms: Public domain | W3C validator |