![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snlindsntorlem | Structured version Visualization version GIF version |
Description: Lemma for snlindsntor 48200. (Contributed by AV, 15-Apr-2019.) |
Ref | Expression |
---|---|
snlindsntor.b | ⊢ 𝐵 = (Base‘𝑀) |
snlindsntor.r | ⊢ 𝑅 = (Scalar‘𝑀) |
snlindsntor.s | ⊢ 𝑆 = (Base‘𝑅) |
snlindsntor.0 | ⊢ 0 = (0g‘𝑅) |
snlindsntor.z | ⊢ 𝑍 = (0g‘𝑀) |
snlindsntor.t | ⊢ · = ( ·𝑠 ‘𝑀) |
Ref | Expression |
---|---|
snlindsntorlem | ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉}) | |
2 | fsng 7171 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) | |
3 | 2 | adantll 713 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) |
4 | 1, 3 | mpbird 257 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠}) |
5 | snssi 4833 | . . . . . 6 ⊢ (𝑠 ∈ 𝑆 → {𝑠} ⊆ 𝑆) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {𝑠} ⊆ 𝑆) |
7 | 4, 6 | fssd 6764 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆) |
8 | snlindsntor.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
9 | 8 | fvexi 6934 | . . . . . 6 ⊢ 𝑆 ∈ V |
10 | snex 5451 | . . . . . 6 ⊢ {𝑋} ∈ V | |
11 | 9, 10 | pm3.2i 470 | . . . . 5 ⊢ (𝑆 ∈ V ∧ {𝑋} ∈ V) |
12 | elmapg 8897 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑m {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) | |
13 | 11, 12 | mp1i 13 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑m {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) |
14 | 7, 13 | mpbird 257 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} ∈ (𝑆 ↑m {𝑋})) |
15 | oveq1 7455 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓( linC ‘𝑀){𝑋}) = ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋})) | |
16 | 15 | eqeq1d 2742 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍)) |
17 | fveq1 6919 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓‘𝑋) = ({〈𝑋, 𝑠〉}‘𝑋)) | |
18 | 17 | eqeq1d 2742 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓‘𝑋) = 0 ↔ ({〈𝑋, 𝑠〉}‘𝑋) = 0 )) |
19 | 16, 18 | imbi12d 344 | . . . 4 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ))) |
20 | snlindsntor.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
21 | snlindsntor.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
22 | snlindsntor.t | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑀) | |
23 | 20, 21, 8, 22 | lincvalsng 48145 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
24 | 23 | 3expa 1118 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
25 | 24 | eqeq1d 2742 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍)) |
26 | fvsng 7214 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) | |
27 | 26 | adantll 713 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) |
28 | 27 | eqeq1d 2742 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉}‘𝑋) = 0 ↔ 𝑠 = 0 )) |
29 | 25, 28 | imbi12d 344 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ((({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
30 | 19, 29 | sylan9bbr 510 | . . 3 ⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 = {〈𝑋, 𝑠〉}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
31 | 14, 30 | rspcdv 3627 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
32 | 31 | ralrimdva 3160 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 {csn 4648 〈cop 4654 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LModclmod 20880 linC clinc 48133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-mulg 19108 df-cntz 19357 df-lmod 20882 df-linc 48135 |
This theorem is referenced by: snlindsntor 48200 |
Copyright terms: Public domain | W3C validator |