Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntorlem Structured version   Visualization version   GIF version

Theorem snlindsntorlem 43284
Description: Lemma for snlindsntor 43285. (Contributed by AV, 15-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntorlem ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝑀,𝑠   𝑆,𝑓,𝑠   𝑓,𝑋,𝑠   𝑓,𝑍,𝑠   · ,𝑓,𝑠   0 ,𝑓,𝑠
Allowed substitution hints:   𝑅(𝑓,𝑠)

Proof of Theorem snlindsntorlem
StepHypRef Expression
1 eqidd 2779 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩})
2 fsng 6671 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
32adantll 704 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
41, 3mpbird 249 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠})
5 snssi 4572 . . . . . 6 (𝑠𝑆 → {𝑠} ⊆ 𝑆)
65adantl 475 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {𝑠} ⊆ 𝑆)
74, 6fssd 6307 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆)
8 snlindsntor.s . . . . . . 7 𝑆 = (Base‘𝑅)
98fvexi 6462 . . . . . 6 𝑆 ∈ V
10 snex 5142 . . . . . 6 {𝑋} ∈ V
119, 10pm3.2i 464 . . . . 5 (𝑆 ∈ V ∧ {𝑋} ∈ V)
12 elmapg 8155 . . . . 5 ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆𝑚 {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
1311, 12mp1i 13 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆𝑚 {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
147, 13mpbird 249 . . 3 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} ∈ (𝑆𝑚 {𝑋}))
15 oveq1 6931 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓( linC ‘𝑀){𝑋}) = ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}))
1615eqeq1d 2780 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍))
17 fveq1 6447 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓𝑋) = ({⟨𝑋, 𝑠⟩}‘𝑋))
1817eqeq1d 2780 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓𝑋) = 0 ↔ ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ))
1916, 18imbi12d 336 . . . 4 (𝑓 = {⟨𝑋, 𝑠⟩} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 )))
20 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
21 snlindsntor.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
22 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
2320, 21, 8, 22lincvalsng 43230 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
24233expa 1108 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
2524eqeq1d 2780 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍))
26 fvsng 6715 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2726adantll 704 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2827eqeq1d 2780 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩}‘𝑋) = 0𝑠 = 0 ))
2925, 28imbi12d 336 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ((({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3019, 29sylan9bbr 506 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) ∧ 𝑓 = {⟨𝑋, 𝑠⟩}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3114, 30rspcdv 3514 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (∀𝑓 ∈ (𝑆𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3231ralrimdva 3151 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  wss 3792  {csn 4398  cop 4404  wf 6133  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  Basecbs 16259  Scalarcsca 16345   ·𝑠 cvsca 16346  0gc0g 16490  LModclmod 19259   linC clinc 43218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-fzo 12789  df-seq 13124  df-hash 13440  df-0g 16492  df-gsum 16493  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-grp 17816  df-mulg 17932  df-cntz 18137  df-lmod 19261  df-linc 43220
This theorem is referenced by:  snlindsntor  43285
  Copyright terms: Public domain W3C validator