Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntorlem Structured version   Visualization version   GIF version

Theorem snlindsntorlem 48387
Description: Lemma for snlindsntor 48388. (Contributed by AV, 15-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntorlem ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝑀,𝑠   𝑆,𝑓,𝑠   𝑓,𝑋,𝑠   𝑓,𝑍,𝑠   · ,𝑓,𝑠   0 ,𝑓,𝑠
Allowed substitution hints:   𝑅(𝑓,𝑠)

Proof of Theorem snlindsntorlem
StepHypRef Expression
1 eqidd 2738 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩})
2 fsng 7157 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
32adantll 714 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
41, 3mpbird 257 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠})
5 snssi 4808 . . . . . 6 (𝑠𝑆 → {𝑠} ⊆ 𝑆)
65adantl 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {𝑠} ⊆ 𝑆)
74, 6fssd 6753 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆)
8 snlindsntor.s . . . . . . 7 𝑆 = (Base‘𝑅)
98fvexi 6920 . . . . . 6 𝑆 ∈ V
10 snex 5436 . . . . . 6 {𝑋} ∈ V
119, 10pm3.2i 470 . . . . 5 (𝑆 ∈ V ∧ {𝑋} ∈ V)
12 elmapg 8879 . . . . 5 ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
1311, 12mp1i 13 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
147, 13mpbird 257 . . 3 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}))
15 oveq1 7438 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓( linC ‘𝑀){𝑋}) = ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}))
1615eqeq1d 2739 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍))
17 fveq1 6905 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓𝑋) = ({⟨𝑋, 𝑠⟩}‘𝑋))
1817eqeq1d 2739 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓𝑋) = 0 ↔ ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ))
1916, 18imbi12d 344 . . . 4 (𝑓 = {⟨𝑋, 𝑠⟩} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 )))
20 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
21 snlindsntor.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
22 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
2320, 21, 8, 22lincvalsng 48333 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
24233expa 1119 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
2524eqeq1d 2739 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍))
26 fvsng 7200 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2726adantll 714 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2827eqeq1d 2739 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩}‘𝑋) = 0𝑠 = 0 ))
2925, 28imbi12d 344 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ((({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3019, 29sylan9bbr 510 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) ∧ 𝑓 = {⟨𝑋, 𝑠⟩}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3114, 30rspcdv 3614 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3231ralrimdva 3154 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951  {csn 4626  cop 4632  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LModclmod 20858   linC clinc 48321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mulg 19086  df-cntz 19335  df-lmod 20860  df-linc 48323
This theorem is referenced by:  snlindsntor  48388
  Copyright terms: Public domain W3C validator