| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snlindsntorlem | Structured version Visualization version GIF version | ||
| Description: Lemma for snlindsntor 48464. (Contributed by AV, 15-Apr-2019.) |
| Ref | Expression |
|---|---|
| snlindsntor.b | ⊢ 𝐵 = (Base‘𝑀) |
| snlindsntor.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| snlindsntor.s | ⊢ 𝑆 = (Base‘𝑅) |
| snlindsntor.0 | ⊢ 0 = (0g‘𝑅) |
| snlindsntor.z | ⊢ 𝑍 = (0g‘𝑀) |
| snlindsntor.t | ⊢ · = ( ·𝑠 ‘𝑀) |
| Ref | Expression |
|---|---|
| snlindsntorlem | ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉}) | |
| 2 | fsng 7112 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) | |
| 3 | 2 | adantll 714 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) |
| 4 | 1, 3 | mpbird 257 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠}) |
| 5 | snssi 4775 | . . . . . 6 ⊢ (𝑠 ∈ 𝑆 → {𝑠} ⊆ 𝑆) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {𝑠} ⊆ 𝑆) |
| 7 | 4, 6 | fssd 6708 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆) |
| 8 | snlindsntor.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
| 9 | 8 | fvexi 6875 | . . . . . 6 ⊢ 𝑆 ∈ V |
| 10 | snex 5394 | . . . . . 6 ⊢ {𝑋} ∈ V | |
| 11 | 9, 10 | pm3.2i 470 | . . . . 5 ⊢ (𝑆 ∈ V ∧ {𝑋} ∈ V) |
| 12 | elmapg 8815 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑m {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) | |
| 13 | 11, 12 | mp1i 13 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑m {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) |
| 14 | 7, 13 | mpbird 257 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} ∈ (𝑆 ↑m {𝑋})) |
| 15 | oveq1 7397 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓( linC ‘𝑀){𝑋}) = ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋})) | |
| 16 | 15 | eqeq1d 2732 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍)) |
| 17 | fveq1 6860 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓‘𝑋) = ({〈𝑋, 𝑠〉}‘𝑋)) | |
| 18 | 17 | eqeq1d 2732 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓‘𝑋) = 0 ↔ ({〈𝑋, 𝑠〉}‘𝑋) = 0 )) |
| 19 | 16, 18 | imbi12d 344 | . . . 4 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ))) |
| 20 | snlindsntor.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
| 21 | snlindsntor.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 22 | snlindsntor.t | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 23 | 20, 21, 8, 22 | lincvalsng 48409 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
| 24 | 23 | 3expa 1118 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
| 25 | 24 | eqeq1d 2732 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍)) |
| 26 | fvsng 7157 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) | |
| 27 | 26 | adantll 714 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) |
| 28 | 27 | eqeq1d 2732 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉}‘𝑋) = 0 ↔ 𝑠 = 0 )) |
| 29 | 25, 28 | imbi12d 344 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ((({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| 30 | 19, 29 | sylan9bbr 510 | . . 3 ⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 = {〈𝑋, 𝑠〉}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| 31 | 14, 30 | rspcdv 3583 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| 32 | 31 | ralrimdva 3134 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 {csn 4592 〈cop 4598 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 LModclmod 20773 linC clinc 48397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-mulg 19007 df-cntz 19256 df-lmod 20775 df-linc 48399 |
| This theorem is referenced by: snlindsntor 48464 |
| Copyright terms: Public domain | W3C validator |