Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntorlem Structured version   Visualization version   GIF version

Theorem snlindsntorlem 48459
Description: Lemma for snlindsntor 48460. (Contributed by AV, 15-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntorlem ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝑀,𝑠   𝑆,𝑓,𝑠   𝑓,𝑋,𝑠   𝑓,𝑍,𝑠   · ,𝑓,𝑠   0 ,𝑓,𝑠
Allowed substitution hints:   𝑅(𝑓,𝑠)

Proof of Theorem snlindsntorlem
StepHypRef Expression
1 eqidd 2730 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩})
2 fsng 7109 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
32adantll 714 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
41, 3mpbird 257 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠})
5 snssi 4772 . . . . . 6 (𝑠𝑆 → {𝑠} ⊆ 𝑆)
65adantl 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {𝑠} ⊆ 𝑆)
74, 6fssd 6705 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆)
8 snlindsntor.s . . . . . . 7 𝑆 = (Base‘𝑅)
98fvexi 6872 . . . . . 6 𝑆 ∈ V
10 snex 5391 . . . . . 6 {𝑋} ∈ V
119, 10pm3.2i 470 . . . . 5 (𝑆 ∈ V ∧ {𝑋} ∈ V)
12 elmapg 8812 . . . . 5 ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
1311, 12mp1i 13 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
147, 13mpbird 257 . . 3 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}))
15 oveq1 7394 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓( linC ‘𝑀){𝑋}) = ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}))
1615eqeq1d 2731 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍))
17 fveq1 6857 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓𝑋) = ({⟨𝑋, 𝑠⟩}‘𝑋))
1817eqeq1d 2731 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓𝑋) = 0 ↔ ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ))
1916, 18imbi12d 344 . . . 4 (𝑓 = {⟨𝑋, 𝑠⟩} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 )))
20 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
21 snlindsntor.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
22 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
2320, 21, 8, 22lincvalsng 48405 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
24233expa 1118 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
2524eqeq1d 2731 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍))
26 fvsng 7154 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2726adantll 714 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2827eqeq1d 2731 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩}‘𝑋) = 0𝑠 = 0 ))
2925, 28imbi12d 344 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ((({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3019, 29sylan9bbr 510 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) ∧ 𝑓 = {⟨𝑋, 𝑠⟩}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3114, 30rspcdv 3580 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3231ralrimdva 3133 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  {csn 4589  cop 4595  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LModclmod 20766   linC clinc 48393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-mulg 19000  df-cntz 19249  df-lmod 20768  df-linc 48395
This theorem is referenced by:  snlindsntor  48460
  Copyright terms: Public domain W3C validator