Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntorlem Structured version   Visualization version   GIF version

Theorem snlindsntorlem 48413
Description: Lemma for snlindsntor 48414. (Contributed by AV, 15-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntorlem ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝑀,𝑠   𝑆,𝑓,𝑠   𝑓,𝑋,𝑠   𝑓,𝑍,𝑠   · ,𝑓,𝑠   0 ,𝑓,𝑠
Allowed substitution hints:   𝑅(𝑓,𝑠)

Proof of Theorem snlindsntorlem
StepHypRef Expression
1 eqidd 2737 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩})
2 fsng 7132 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
32adantll 714 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
41, 3mpbird 257 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠})
5 snssi 4789 . . . . . 6 (𝑠𝑆 → {𝑠} ⊆ 𝑆)
65adantl 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {𝑠} ⊆ 𝑆)
74, 6fssd 6728 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆)
8 snlindsntor.s . . . . . . 7 𝑆 = (Base‘𝑅)
98fvexi 6895 . . . . . 6 𝑆 ∈ V
10 snex 5411 . . . . . 6 {𝑋} ∈ V
119, 10pm3.2i 470 . . . . 5 (𝑆 ∈ V ∧ {𝑋} ∈ V)
12 elmapg 8858 . . . . 5 ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
1311, 12mp1i 13 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
147, 13mpbird 257 . . 3 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} ∈ (𝑆m {𝑋}))
15 oveq1 7417 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓( linC ‘𝑀){𝑋}) = ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}))
1615eqeq1d 2738 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍))
17 fveq1 6880 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓𝑋) = ({⟨𝑋, 𝑠⟩}‘𝑋))
1817eqeq1d 2738 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓𝑋) = 0 ↔ ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ))
1916, 18imbi12d 344 . . . 4 (𝑓 = {⟨𝑋, 𝑠⟩} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 )))
20 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
21 snlindsntor.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
22 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
2320, 21, 8, 22lincvalsng 48359 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
24233expa 1118 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
2524eqeq1d 2738 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍))
26 fvsng 7177 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2726adantll 714 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2827eqeq1d 2738 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩}‘𝑋) = 0𝑠 = 0 ))
2925, 28imbi12d 344 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ((({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3019, 29sylan9bbr 510 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) ∧ 𝑓 = {⟨𝑋, 𝑠⟩}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3114, 30rspcdv 3598 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3231ralrimdva 3141 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  {csn 4606  cop 4612  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  LModclmod 20822   linC clinc 48347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-mulg 19056  df-cntz 19305  df-lmod 20824  df-linc 48349
This theorem is referenced by:  snlindsntor  48414
  Copyright terms: Public domain W3C validator