Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones9 Structured version   Visualization version   GIF version

Theorem sticksstones9 40038
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
Hypotheses
Ref Expression
sticksstones9.1 (𝜑𝑁 ∈ ℕ0)
sticksstones9.2 (𝜑𝐾 = 0)
sticksstones9.3 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones9.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones9.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones9 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐴(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘,𝑏)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑏)   𝑁(𝑥,𝑦,𝑓,𝑘,𝑏)

Proof of Theorem sticksstones9
StepHypRef Expression
1 sticksstones9.2 . . . . 5 (𝜑𝐾 = 0)
21iftrued 4464 . . . 4 (𝜑 → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
32adantr 480 . . 3 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
4 eqid 2738 . . . . . . . . . . 11 {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}
5 1nn 11914 . . . . . . . . . . . . 13 1 ∈ ℕ
65a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ)
7 sticksstones9.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
8 fsng 6991 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
96, 7, 8syl2anc 583 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
104, 9mpbiri 257 . . . . . . . . . 10 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶{𝑁})
117snssd 4739 . . . . . . . . . 10 (𝜑 → {𝑁} ⊆ ℕ0)
1210, 11jca 511 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0))
13 fss 6601 . . . . . . . . 9 (({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0) → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
1412, 13syl 17 . . . . . . . 8 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
151oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) = (0 + 1))
16 0p1e1 12025 . . . . . . . . . . . . 13 (0 + 1) = 1
1715, 16eqtrdi 2795 . . . . . . . . . . . 12 (𝜑 → (𝐾 + 1) = 1)
1817oveq2d 7271 . . . . . . . . . . 11 (𝜑 → (1...(𝐾 + 1)) = (1...1))
19 1zzd 12281 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
20 fzsn 13227 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → (1...1) = {1})
2218, 21eqtrd 2778 . . . . . . . . . 10 (𝜑 → (1...(𝐾 + 1)) = {1})
2322eqcomd 2744 . . . . . . . . 9 (𝜑 → {1} = (1...(𝐾 + 1)))
2423feq2d 6570 . . . . . . . 8 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
2514, 24mpbid 231 . . . . . . 7 (𝜑 → {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0)
2622sumeq1d 15341 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖))
27 fvsng 7034 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
286, 7, 27syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
297nn0cnd 12225 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
3028, 29eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}‘1) ∈ ℂ)
316, 30jca 511 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ))
32 fveq2 6756 . . . . . . . . . . 11 (𝑖 = 1 → ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3332sumsn 15386 . . . . . . . . . 10 ((1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ) → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3431, 33syl 17 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
356, 7jca 511 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ 𝑁 ∈ ℕ0))
3635, 27syl 17 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
3734, 36eqtrd 2778 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3826, 37eqtrd 2778 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3925, 38jca 511 . . . . . 6 (𝜑 → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4039adantr 480 . . . . 5 ((𝜑𝑏𝐵) → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
41 snex 5349 . . . . . 6 {⟨1, 𝑁⟩} ∈ V
42 feq1 6565 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
43 simpl 482 . . . . . . . . . . 11 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = {⟨1, 𝑁⟩})
4443fveq1d 6758 . . . . . . . . . 10 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ({⟨1, 𝑁⟩}‘𝑖))
4544sumeq2dv 15343 . . . . . . . . 9 (𝑔 = {⟨1, 𝑁⟩} → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖))
4645eqeq1d 2740 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4742, 46anbi12d 630 . . . . . . 7 (𝑔 = {⟨1, 𝑁⟩} → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4847elabg 3600 . . . . . 6 ({⟨1, 𝑁⟩} ∈ V → ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4941, 48ax-mp 5 . . . . 5 ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
5040, 49sylibr 233 . . . 4 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
51 sticksstones9.4 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
5251a1i 11 . . . 4 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
5350, 52eleqtrrd 2842 . . 3 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ 𝐴)
543, 53eqeltrd 2839 . 2 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) ∈ 𝐴)
55 sticksstones9.3 . 2 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
5654, 55fmptd 6970 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  Vcvv 3422  wss 3883  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  sticksstones11  40040
  Copyright terms: Public domain W3C validator