Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones9 Structured version   Visualization version   GIF version

Theorem sticksstones9 42136
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
Hypotheses
Ref Expression
sticksstones9.1 (𝜑𝑁 ∈ ℕ0)
sticksstones9.2 (𝜑𝐾 = 0)
sticksstones9.3 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones9.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones9.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones9 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐴(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘,𝑏)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑏)   𝑁(𝑥,𝑦,𝑓,𝑘,𝑏)

Proof of Theorem sticksstones9
StepHypRef Expression
1 sticksstones9.2 . . . . 5 (𝜑𝐾 = 0)
21iftrued 4539 . . . 4 (𝜑 → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
32adantr 480 . . 3 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
4 eqid 2735 . . . . . . . . . . 11 {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}
5 1nn 12275 . . . . . . . . . . . . 13 1 ∈ ℕ
65a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ)
7 sticksstones9.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
8 fsng 7157 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
96, 7, 8syl2anc 584 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
104, 9mpbiri 258 . . . . . . . . . 10 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶{𝑁})
117snssd 4814 . . . . . . . . . 10 (𝜑 → {𝑁} ⊆ ℕ0)
1210, 11jca 511 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0))
13 fss 6753 . . . . . . . . 9 (({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0) → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
1412, 13syl 17 . . . . . . . 8 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
151oveq1d 7446 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) = (0 + 1))
16 0p1e1 12386 . . . . . . . . . . . . 13 (0 + 1) = 1
1715, 16eqtrdi 2791 . . . . . . . . . . . 12 (𝜑 → (𝐾 + 1) = 1)
1817oveq2d 7447 . . . . . . . . . . 11 (𝜑 → (1...(𝐾 + 1)) = (1...1))
19 1zzd 12646 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
20 fzsn 13603 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → (1...1) = {1})
2218, 21eqtrd 2775 . . . . . . . . . 10 (𝜑 → (1...(𝐾 + 1)) = {1})
2322eqcomd 2741 . . . . . . . . 9 (𝜑 → {1} = (1...(𝐾 + 1)))
2423feq2d 6723 . . . . . . . 8 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
2514, 24mpbid 232 . . . . . . 7 (𝜑 → {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0)
2622sumeq1d 15733 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖))
27 fvsng 7200 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
286, 7, 27syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
297nn0cnd 12587 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
3028, 29eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}‘1) ∈ ℂ)
316, 30jca 511 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ))
32 fveq2 6907 . . . . . . . . . . 11 (𝑖 = 1 → ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3332sumsn 15779 . . . . . . . . . 10 ((1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ) → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3431, 33syl 17 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
356, 7jca 511 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ 𝑁 ∈ ℕ0))
3635, 27syl 17 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
3734, 36eqtrd 2775 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3826, 37eqtrd 2775 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3925, 38jca 511 . . . . . 6 (𝜑 → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4039adantr 480 . . . . 5 ((𝜑𝑏𝐵) → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
41 snex 5442 . . . . . 6 {⟨1, 𝑁⟩} ∈ V
42 feq1 6717 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
43 simpl 482 . . . . . . . . . . 11 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = {⟨1, 𝑁⟩})
4443fveq1d 6909 . . . . . . . . . 10 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ({⟨1, 𝑁⟩}‘𝑖))
4544sumeq2dv 15735 . . . . . . . . 9 (𝑔 = {⟨1, 𝑁⟩} → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖))
4645eqeq1d 2737 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4742, 46anbi12d 632 . . . . . . 7 (𝑔 = {⟨1, 𝑁⟩} → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4847elabg 3677 . . . . . 6 ({⟨1, 𝑁⟩} ∈ V → ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4941, 48ax-mp 5 . . . . 5 ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
5040, 49sylibr 234 . . . 4 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
51 sticksstones9.4 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
5251a1i 11 . . . 4 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
5350, 52eleqtrrd 2842 . . 3 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ 𝐴)
543, 53eqeltrd 2839 . 2 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) ∈ 𝐴)
55 sticksstones9.3 . 2 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
5654, 55fmptd 7134 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wral 3059  Vcvv 3478  wss 3963  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cmin 11490  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  sticksstones11  42138
  Copyright terms: Public domain W3C validator