Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones9 Structured version   Visualization version   GIF version

Theorem sticksstones9 40118
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
Hypotheses
Ref Expression
sticksstones9.1 (𝜑𝑁 ∈ ℕ0)
sticksstones9.2 (𝜑𝐾 = 0)
sticksstones9.3 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones9.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones9.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones9 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐴(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘,𝑏)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑏)   𝑁(𝑥,𝑦,𝑓,𝑘,𝑏)

Proof of Theorem sticksstones9
StepHypRef Expression
1 sticksstones9.2 . . . . 5 (𝜑𝐾 = 0)
21iftrued 4467 . . . 4 (𝜑 → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
32adantr 481 . . 3 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
4 eqid 2738 . . . . . . . . . . 11 {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}
5 1nn 11994 . . . . . . . . . . . . 13 1 ∈ ℕ
65a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ)
7 sticksstones9.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
8 fsng 7001 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
96, 7, 8syl2anc 584 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
104, 9mpbiri 257 . . . . . . . . . 10 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶{𝑁})
117snssd 4742 . . . . . . . . . 10 (𝜑 → {𝑁} ⊆ ℕ0)
1210, 11jca 512 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0))
13 fss 6609 . . . . . . . . 9 (({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0) → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
1412, 13syl 17 . . . . . . . 8 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
151oveq1d 7282 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) = (0 + 1))
16 0p1e1 12105 . . . . . . . . . . . . 13 (0 + 1) = 1
1715, 16eqtrdi 2794 . . . . . . . . . . . 12 (𝜑 → (𝐾 + 1) = 1)
1817oveq2d 7283 . . . . . . . . . . 11 (𝜑 → (1...(𝐾 + 1)) = (1...1))
19 1zzd 12361 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
20 fzsn 13308 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → (1...1) = {1})
2218, 21eqtrd 2778 . . . . . . . . . 10 (𝜑 → (1...(𝐾 + 1)) = {1})
2322eqcomd 2744 . . . . . . . . 9 (𝜑 → {1} = (1...(𝐾 + 1)))
2423feq2d 6578 . . . . . . . 8 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
2514, 24mpbid 231 . . . . . . 7 (𝜑 → {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0)
2622sumeq1d 15423 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖))
27 fvsng 7044 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
286, 7, 27syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
297nn0cnd 12305 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
3028, 29eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}‘1) ∈ ℂ)
316, 30jca 512 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ))
32 fveq2 6766 . . . . . . . . . . 11 (𝑖 = 1 → ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3332sumsn 15468 . . . . . . . . . 10 ((1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ) → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3431, 33syl 17 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
356, 7jca 512 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ 𝑁 ∈ ℕ0))
3635, 27syl 17 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
3734, 36eqtrd 2778 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3826, 37eqtrd 2778 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3925, 38jca 512 . . . . . 6 (𝜑 → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4039adantr 481 . . . . 5 ((𝜑𝑏𝐵) → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
41 snex 5352 . . . . . 6 {⟨1, 𝑁⟩} ∈ V
42 feq1 6573 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
43 simpl 483 . . . . . . . . . . 11 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = {⟨1, 𝑁⟩})
4443fveq1d 6768 . . . . . . . . . 10 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ({⟨1, 𝑁⟩}‘𝑖))
4544sumeq2dv 15425 . . . . . . . . 9 (𝑔 = {⟨1, 𝑁⟩} → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖))
4645eqeq1d 2740 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4742, 46anbi12d 631 . . . . . . 7 (𝑔 = {⟨1, 𝑁⟩} → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4847elabg 3606 . . . . . 6 ({⟨1, 𝑁⟩} ∈ V → ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4941, 48ax-mp 5 . . . . 5 ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
5040, 49sylibr 233 . . . 4 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
51 sticksstones9.4 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
5251a1i 11 . . . 4 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
5350, 52eleqtrrd 2842 . . 3 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ 𝐴)
543, 53eqeltrd 2839 . 2 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) ∈ 𝐴)
55 sticksstones9.3 . 2 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
5654, 55fmptd 6980 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3429  wss 3886  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5073  cmpt 5156  wf 6422  cfv 6426  (class class class)co 7267  cc 10879  0cc0 10881  1c1 10882   + caddc 10884   < clt 11019  cmin 11215  cn 11983  0cn0 12243  cz 12329  ...cfz 13249  Σcsu 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-fz 13250  df-fzo 13393  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-sum 15408
This theorem is referenced by:  sticksstones11  40120
  Copyright terms: Public domain W3C validator