Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones9 Structured version   Visualization version   GIF version

Theorem sticksstones9 41757
Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
Hypotheses
Ref Expression
sticksstones9.1 (𝜑𝑁 ∈ ℕ0)
sticksstones9.2 (𝜑𝐾 = 0)
sticksstones9.3 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones9.4 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones9.5 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones9 (𝜑𝐺:𝐵𝐴)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐴(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑘,𝑏)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑏)   𝑁(𝑥,𝑦,𝑓,𝑘,𝑏)

Proof of Theorem sticksstones9
StepHypRef Expression
1 sticksstones9.2 . . . . 5 (𝜑𝐾 = 0)
21iftrued 4538 . . . 4 (𝜑 → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
32adantr 479 . . 3 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = {⟨1, 𝑁⟩})
4 eqid 2725 . . . . . . . . . . 11 {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}
5 1nn 12256 . . . . . . . . . . . . 13 1 ∈ ℕ
65a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ)
7 sticksstones9.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
8 fsng 7146 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
96, 7, 8syl2anc 582 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ↔ {⟨1, 𝑁⟩} = {⟨1, 𝑁⟩}))
104, 9mpbiri 257 . . . . . . . . . 10 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶{𝑁})
117snssd 4814 . . . . . . . . . 10 (𝜑 → {𝑁} ⊆ ℕ0)
1210, 11jca 510 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0))
13 fss 6739 . . . . . . . . 9 (({⟨1, 𝑁⟩}:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0) → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
1412, 13syl 17 . . . . . . . 8 (𝜑 → {⟨1, 𝑁⟩}:{1}⟶ℕ0)
151oveq1d 7434 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) = (0 + 1))
16 0p1e1 12367 . . . . . . . . . . . . 13 (0 + 1) = 1
1715, 16eqtrdi 2781 . . . . . . . . . . . 12 (𝜑 → (𝐾 + 1) = 1)
1817oveq2d 7435 . . . . . . . . . . 11 (𝜑 → (1...(𝐾 + 1)) = (1...1))
19 1zzd 12626 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
20 fzsn 13578 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → (1...1) = {1})
2218, 21eqtrd 2765 . . . . . . . . . 10 (𝜑 → (1...(𝐾 + 1)) = {1})
2322eqcomd 2731 . . . . . . . . 9 (𝜑 → {1} = (1...(𝐾 + 1)))
2423feq2d 6709 . . . . . . . 8 (𝜑 → ({⟨1, 𝑁⟩}:{1}⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
2514, 24mpbid 231 . . . . . . 7 (𝜑 → {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0)
2622sumeq1d 15683 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖))
27 fvsng 7189 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
286, 7, 27syl2anc 582 . . . . . . . . . . . 12 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
297nn0cnd 12567 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
3028, 29eqeltrd 2825 . . . . . . . . . . 11 (𝜑 → ({⟨1, 𝑁⟩}‘1) ∈ ℂ)
316, 30jca 510 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ))
32 fveq2 6896 . . . . . . . . . . 11 (𝑖 = 1 → ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3332sumsn 15728 . . . . . . . . . 10 ((1 ∈ ℕ ∧ ({⟨1, 𝑁⟩}‘1) ∈ ℂ) → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
3431, 33syl 17 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = ({⟨1, 𝑁⟩}‘1))
356, 7jca 510 . . . . . . . . . 10 (𝜑 → (1 ∈ ℕ ∧ 𝑁 ∈ ℕ0))
3635, 27syl 17 . . . . . . . . 9 (𝜑 → ({⟨1, 𝑁⟩}‘1) = 𝑁)
3734, 36eqtrd 2765 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ {1} ({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3826, 37eqtrd 2765 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)
3925, 38jca 510 . . . . . 6 (𝜑 → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4039adantr 479 . . . . 5 ((𝜑𝑏𝐵) → ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
41 snex 5433 . . . . . 6 {⟨1, 𝑁⟩} ∈ V
42 feq1 6704 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ {⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0))
43 simpl 481 . . . . . . . . . . 11 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = {⟨1, 𝑁⟩})
4443fveq1d 6898 . . . . . . . . . 10 ((𝑔 = {⟨1, 𝑁⟩} ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ({⟨1, 𝑁⟩}‘𝑖))
4544sumeq2dv 15685 . . . . . . . . 9 (𝑔 = {⟨1, 𝑁⟩} → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖))
4645eqeq1d 2727 . . . . . . . 8 (𝑔 = {⟨1, 𝑁⟩} → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
4742, 46anbi12d 630 . . . . . . 7 (𝑔 = {⟨1, 𝑁⟩} → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4847elabg 3662 . . . . . 6 ({⟨1, 𝑁⟩} ∈ V → ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁)))
4941, 48ax-mp 5 . . . . 5 ({⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ({⟨1, 𝑁⟩}:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))({⟨1, 𝑁⟩}‘𝑖) = 𝑁))
5040, 49sylibr 233 . . . 4 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
51 sticksstones9.4 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
5251a1i 11 . . . 4 ((𝜑𝑏𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
5350, 52eleqtrrd 2828 . . 3 ((𝜑𝑏𝐵) → {⟨1, 𝑁⟩} ∈ 𝐴)
543, 53eqeltrd 2825 . 2 ((𝜑𝑏𝐵) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) ∈ 𝐴)
55 sticksstones9.3 . 2 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
5654, 55fmptd 7123 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2702  wral 3050  Vcvv 3461  wss 3944  ifcif 4530  {csn 4630  cop 4636   class class class wbr 5149  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cmin 11476  cn 12245  0cn0 12505  cz 12591  ...cfz 13519  Σcsu 15668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669
This theorem is referenced by:  sticksstones11  41759
  Copyright terms: Public domain W3C validator