Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symg1bas | Structured version Visualization version GIF version |
Description: The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.) |
Ref | Expression |
---|---|
symg1bas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symg1bas.2 | ⊢ 𝐵 = (Base‘𝐺) |
symg1bas.0 | ⊢ 𝐴 = {𝐼} |
Ref | Expression |
---|---|
symg1bas | ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symg1bas.1 | . . 3 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symg1bas.2 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbas 18893 | . 2 ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
4 | symg1bas.0 | . . . . . 6 ⊢ 𝐴 = {𝐼} | |
5 | eqidd 2739 | . . . . . . 7 ⊢ (𝐴 = {𝐼} → 𝑝 = 𝑝) | |
6 | id 22 | . . . . . . 7 ⊢ (𝐴 = {𝐼} → 𝐴 = {𝐼}) | |
7 | 5, 6, 6 | f1oeq123d 6694 | . . . . . 6 ⊢ (𝐴 = {𝐼} → (𝑝:𝐴–1-1-onto→𝐴 ↔ 𝑝:{𝐼}–1-1-onto→{𝐼})) |
8 | 4, 7 | ax-mp 5 | . . . . 5 ⊢ (𝑝:𝐴–1-1-onto→𝐴 ↔ 𝑝:{𝐼}–1-1-onto→{𝐼}) |
9 | f1of 6700 | . . . . . . 7 ⊢ (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝:{𝐼}⟶{𝐼}) | |
10 | fsng 6991 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {〈𝐼, 𝐼〉})) | |
11 | 10 | anidms 566 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {〈𝐼, 𝐼〉})) |
12 | 9, 11 | syl5ib 243 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝 = {〈𝐼, 𝐼〉})) |
13 | f1osng 6740 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → {〈𝐼, 𝐼〉}:{𝐼}–1-1-onto→{𝐼}) | |
14 | 13 | anidms 566 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉}:{𝐼}–1-1-onto→{𝐼}) |
15 | f1oeq1 6688 | . . . . . . 7 ⊢ (𝑝 = {〈𝐼, 𝐼〉} → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ {〈𝐼, 𝐼〉}:{𝐼}–1-1-onto→{𝐼})) | |
16 | 14, 15 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝑝 = {〈𝐼, 𝐼〉} → 𝑝:{𝐼}–1-1-onto→{𝐼})) |
17 | 12, 16 | impbid 211 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ 𝑝 = {〈𝐼, 𝐼〉})) |
18 | 8, 17 | syl5bb 282 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑝:𝐴–1-1-onto→𝐴 ↔ 𝑝 = {〈𝐼, 𝐼〉})) |
19 | vex 3426 | . . . . 5 ⊢ 𝑝 ∈ V | |
20 | f1oeq1 6688 | . . . . 5 ⊢ (𝑓 = 𝑝 → (𝑓:𝐴–1-1-onto→𝐴 ↔ 𝑝:𝐴–1-1-onto→𝐴)) | |
21 | 19, 20 | elab 3602 | . . . 4 ⊢ (𝑝 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ↔ 𝑝:𝐴–1-1-onto→𝐴) |
22 | velsn 4574 | . . . 4 ⊢ (𝑝 ∈ {{〈𝐼, 𝐼〉}} ↔ 𝑝 = {〈𝐼, 𝐼〉}) | |
23 | 18, 21, 22 | 3bitr4g 313 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝑝 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ↔ 𝑝 ∈ {{〈𝐼, 𝐼〉}})) |
24 | 23 | eqrdv 2736 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} = {{〈𝐼, 𝐼〉}}) |
25 | 3, 24 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 {csn 4558 〈cop 4564 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 Basecbs 16840 SymGrpcsymg 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 |
This theorem is referenced by: symg2bas 18915 snsymgefmndeq 18917 psgnsn 19043 m1detdiag 21654 |
Copyright terms: Public domain | W3C validator |