![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symg1bas | Structured version Visualization version GIF version |
Description: The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.) |
Ref | Expression |
---|---|
symg1bas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symg1bas.2 | ⊢ 𝐵 = (Base‘𝐺) |
symg1bas.0 | ⊢ 𝐴 = {𝐼} |
Ref | Expression |
---|---|
symg1bas | ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{⟨𝐼, 𝐼⟩}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symg1bas.1 | . . 3 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symg1bas.2 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbas 19238 | . 2 ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
4 | symg1bas.0 | . . . . . 6 ⊢ 𝐴 = {𝐼} | |
5 | eqidd 2734 | . . . . . . 7 ⊢ (𝐴 = {𝐼} → 𝑝 = 𝑝) | |
6 | id 22 | . . . . . . 7 ⊢ (𝐴 = {𝐼} → 𝐴 = {𝐼}) | |
7 | 5, 6, 6 | f1oeq123d 6828 | . . . . . 6 ⊢ (𝐴 = {𝐼} → (𝑝:𝐴–1-1-onto→𝐴 ↔ 𝑝:{𝐼}–1-1-onto→{𝐼})) |
8 | 4, 7 | ax-mp 5 | . . . . 5 ⊢ (𝑝:𝐴–1-1-onto→𝐴 ↔ 𝑝:{𝐼}–1-1-onto→{𝐼}) |
9 | f1of 6834 | . . . . . . 7 ⊢ (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝:{𝐼}⟶{𝐼}) | |
10 | fsng 7135 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩})) | |
11 | 10 | anidms 568 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩})) |
12 | 9, 11 | imbitrid 243 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝 = {⟨𝐼, 𝐼⟩})) |
13 | f1osng 6875 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼}) | |
14 | 13 | anidms 568 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼}) |
15 | f1oeq1 6822 | . . . . . . 7 ⊢ (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼})) | |
16 | 14, 15 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝑝 = {⟨𝐼, 𝐼⟩} → 𝑝:{𝐼}–1-1-onto→{𝐼})) |
17 | 12, 16 | impbid 211 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩})) |
18 | 8, 17 | bitrid 283 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑝:𝐴–1-1-onto→𝐴 ↔ 𝑝 = {⟨𝐼, 𝐼⟩})) |
19 | vex 3479 | . . . . 5 ⊢ 𝑝 ∈ V | |
20 | f1oeq1 6822 | . . . . 5 ⊢ (𝑓 = 𝑝 → (𝑓:𝐴–1-1-onto→𝐴 ↔ 𝑝:𝐴–1-1-onto→𝐴)) | |
21 | 19, 20 | elab 3669 | . . . 4 ⊢ (𝑝 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ↔ 𝑝:𝐴–1-1-onto→𝐴) |
22 | velsn 4645 | . . . 4 ⊢ (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}) | |
23 | 18, 21, 22 | 3bitr4g 314 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝑝 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ↔ 𝑝 ∈ {{⟨𝐼, 𝐼⟩}})) |
24 | 23 | eqrdv 2731 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} = {{⟨𝐼, 𝐼⟩}}) |
25 | 3, 24 | eqtrid 2785 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{⟨𝐼, 𝐼⟩}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {cab 2710 {csn 4629 ⟨cop 4635 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 Basecbs 17144 SymGrpcsymg 19234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-tset 17216 df-efmnd 18750 df-symg 19235 |
This theorem is referenced by: symg2bas 19260 snsymgefmndeq 19262 psgnsn 19388 m1detdiag 22099 |
Copyright terms: Public domain | W3C validator |