MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem7 Structured version   Visualization version   GIF version

Theorem wlkp1lem7 27394
Description: Lemma for wlkp1 27396. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵 ∈ V)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem7 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))

Proof of Theorem wlkp1lem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
2 fveq2 6669 . . . . . 6 (𝑘 = 𝑁 → (𝑄𝑘) = (𝑄𝑁))
3 fveq2 6669 . . . . . 6 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
42, 3eqeq12d 2842 . . . . 5 (𝑘 = 𝑁 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄𝑁) = (𝑃𝑁)))
5 wlkp1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
6 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
7 wlkp1.f . . . . . 6 (𝜑 → Fun 𝐼)
8 wlkp1.a . . . . . 6 (𝜑𝐼 ∈ Fin)
9 wlkp1.b . . . . . 6 (𝜑𝐵 ∈ V)
10 wlkp1.c . . . . . 6 (𝜑𝐶𝑉)
11 wlkp1.d . . . . . 6 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
12 wlkp1.w . . . . . 6 (𝜑𝐹(Walks‘𝐺)𝑃)
13 wlkp1.n . . . . . 6 𝑁 = (♯‘𝐹)
14 wlkp1.e . . . . . 6 (𝜑𝐸 ∈ (Edg‘𝐺))
15 wlkp1.u . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 wlkp1.h . . . . . 6 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 wlkp1.q . . . . . 6 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 wlkp1.s . . . . . 6 (𝜑 → (Vtx‘𝑆) = 𝑉)
195, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18wlkp1lem5 27392 . . . . 5 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
20 wlkcl 27330 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
2113eqcomi 2835 . . . . . . . 8 (♯‘𝐹) = 𝑁
2221eleq1i 2908 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0)
23 nn0fz0 13000 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
2422, 23sylbb 220 . . . . . 6 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (0...𝑁))
2512, 20, 243syl 18 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
264, 19, 25rspcdva 3629 . . . 4 (𝜑 → (𝑄𝑁) = (𝑃𝑁))
2717fveq1i 6670 . . . . 5 (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1))
28 ovex 7183 . . . . . 6 (𝑁 + 1) ∈ V
295, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem1 27388 . . . . . 6 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
30 fsnunfv 6947 . . . . . 6 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
3128, 10, 29, 30mp3an2i 1459 . . . . 5 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
3227, 31syl5eq 2873 . . . 4 (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶)
3326, 32preq12d 4676 . . 3 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃𝑁), 𝐶})
34 fsnunfv 6947 . . . 4 ((𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
359, 14, 11, 34syl3anc 1365 . . 3 (𝜑 → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
361, 33, 353sstr4d 4018 . 2 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
375, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16wlkp1lem3 27390 . 2 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
3836, 37sseqtrrd 4012 1 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1530  wcel 2107  Vcvv 3500  cun 3938  wss 3940  {csn 4564  {cpr 4566  cop 4570   class class class wbr 5063  dom cdm 5554  Fun wfun 6348  cfv 6354  (class class class)co 7150  Fincfn 8503  0cc0 10531  1c1 10532   + caddc 10534  0cn0 11891  ...cfz 12887  chash 13685  Vtxcvtx 26714  iEdgciedg 26715  Edgcedg 26765  Walkscwlks 27311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-fzo 13029  df-hash 13686  df-word 13857  df-wlks 27314
This theorem is referenced by:  wlkp1lem8  27395
  Copyright terms: Public domain W3C validator