MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem7 Structured version   Visualization version   GIF version

Theorem wlkp1lem7 29658
Description: Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem7 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))

Proof of Theorem wlkp1lem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
2 fveq2 6828 . . . . . 6 (𝑘 = 𝑁 → (𝑄𝑘) = (𝑄𝑁))
3 fveq2 6828 . . . . . 6 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
42, 3eqeq12d 2749 . . . . 5 (𝑘 = 𝑁 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄𝑁) = (𝑃𝑁)))
5 wlkp1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
6 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
7 wlkp1.f . . . . . 6 (𝜑 → Fun 𝐼)
8 wlkp1.a . . . . . 6 (𝜑𝐼 ∈ Fin)
9 wlkp1.b . . . . . 6 (𝜑𝐵𝑊)
10 wlkp1.c . . . . . 6 (𝜑𝐶𝑉)
11 wlkp1.d . . . . . 6 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
12 wlkp1.w . . . . . 6 (𝜑𝐹(Walks‘𝐺)𝑃)
13 wlkp1.n . . . . . 6 𝑁 = (♯‘𝐹)
14 wlkp1.e . . . . . 6 (𝜑𝐸 ∈ (Edg‘𝐺))
15 wlkp1.u . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 wlkp1.h . . . . . 6 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 wlkp1.q . . . . . 6 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 wlkp1.s . . . . . 6 (𝜑 → (Vtx‘𝑆) = 𝑉)
195, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18wlkp1lem5 29656 . . . . 5 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
20 wlkcl 29596 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
2113eqcomi 2742 . . . . . . . 8 (♯‘𝐹) = 𝑁
2221eleq1i 2824 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0)
23 nn0fz0 13527 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
2422, 23sylbb 219 . . . . . 6 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (0...𝑁))
2512, 20, 243syl 18 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
264, 19, 25rspcdva 3574 . . . 4 (𝜑 → (𝑄𝑁) = (𝑃𝑁))
2717fveq1i 6829 . . . . 5 (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1))
28 ovex 7385 . . . . . 6 (𝑁 + 1) ∈ V
295, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem1 29652 . . . . . 6 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
30 fsnunfv 7127 . . . . . 6 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
3128, 10, 29, 30mp3an2i 1468 . . . . 5 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
3227, 31eqtrid 2780 . . . 4 (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶)
3326, 32preq12d 4693 . . 3 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃𝑁), 𝐶})
34 fsnunfv 7127 . . . 4 ((𝐵𝑊𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
359, 14, 11, 34syl3anc 1373 . . 3 (𝜑 → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
361, 33, 353sstr4d 3986 . 2 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
375, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16wlkp1lem3 29654 . 2 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
3836, 37sseqtrrd 3968 1 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  wss 3898  {csn 4575  {cpr 4577  cop 4581   class class class wbr 5093  dom cdm 5619  Fun wfun 6480  cfv 6486  (class class class)co 7352  Fincfn 8875  0cc0 11013  1c1 11014   + caddc 11016  0cn0 12388  ...cfz 13409  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  Walkscwlks 29577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-wlks 29580
This theorem is referenced by:  wlkp1lem8  29659
  Copyright terms: Public domain W3C validator