Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkp1lem7 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 28049. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem7 | ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.x | . . 3 ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) | |
2 | fveq2 6774 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑄‘𝑘) = (𝑄‘𝑁)) | |
3 | fveq2 6774 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
4 | 2, 3 | eqeq12d 2754 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝑄‘𝑘) = (𝑃‘𝑘) ↔ (𝑄‘𝑁) = (𝑃‘𝑁))) |
5 | wlkp1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | wlkp1.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
8 | wlkp1.a | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
9 | wlkp1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
11 | wlkp1.d | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) | |
12 | wlkp1.w | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
13 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
14 | wlkp1.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) | |
15 | wlkp1.u | . . . . . 6 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
16 | wlkp1.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
17 | wlkp1.q | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
18 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
19 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18 | wlkp1lem5 28045 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
20 | wlkcl 27982 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
21 | 13 | eqcomi 2747 | . . . . . . . 8 ⊢ (♯‘𝐹) = 𝑁 |
22 | 21 | eleq1i 2829 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0) |
23 | nn0fz0 13354 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
24 | 22, 23 | sylbb 218 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
25 | 12, 20, 24 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
26 | 4, 19, 25 | rspcdva 3562 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) = (𝑃‘𝑁)) |
27 | 17 | fveq1i 6775 | . . . . 5 ⊢ (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) |
28 | ovex 7308 | . . . . . 6 ⊢ (𝑁 + 1) ∈ V | |
29 | 5, 6, 7, 8, 9, 10, 11, 12, 13 | wlkp1lem1 28041 | . . . . . 6 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
30 | fsnunfv 7059 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) | |
31 | 28, 10, 29, 30 | mp3an2i 1465 | . . . . 5 ⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
32 | 27, 31 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶) |
33 | 26, 32 | preq12d 4677 | . . 3 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃‘𝑁), 𝐶}) |
34 | fsnunfv 7059 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) | |
35 | 9, 14, 11, 34 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
36 | 1, 33, 35 | 3sstr4d 3968 | . 2 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
37 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16 | wlkp1lem3 28043 | . 2 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
38 | 36, 37 | sseqtrrd 3962 | 1 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 〈cop 4567 class class class wbr 5074 dom cdm 5589 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 0cc0 10871 1c1 10872 + caddc 10874 ℕ0cn0 12233 ...cfz 13239 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 Walkscwlks 27963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-wlks 27966 |
This theorem is referenced by: wlkp1lem8 28048 |
Copyright terms: Public domain | W3C validator |