![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem7 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29205. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | β’ π = (VtxβπΊ) |
wlkp1.i | β’ πΌ = (iEdgβπΊ) |
wlkp1.f | β’ (π β Fun πΌ) |
wlkp1.a | β’ (π β πΌ β Fin) |
wlkp1.b | β’ (π β π΅ β π) |
wlkp1.c | β’ (π β πΆ β π) |
wlkp1.d | β’ (π β Β¬ π΅ β dom πΌ) |
wlkp1.w | β’ (π β πΉ(WalksβπΊ)π) |
wlkp1.n | β’ π = (β―βπΉ) |
wlkp1.e | β’ (π β πΈ β (EdgβπΊ)) |
wlkp1.x | β’ (π β {(πβπ), πΆ} β πΈ) |
wlkp1.u | β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
wlkp1.h | β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
wlkp1.q | β’ π = (π βͺ {β¨(π + 1), πΆβ©}) |
wlkp1.s | β’ (π β (Vtxβπ) = π) |
Ref | Expression |
---|---|
wlkp1lem7 | β’ (π β {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(π»βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.x | . . 3 β’ (π β {(πβπ), πΆ} β πΈ) | |
2 | fveq2 6890 | . . . . . 6 β’ (π = π β (πβπ) = (πβπ)) | |
3 | fveq2 6890 | . . . . . 6 β’ (π = π β (πβπ) = (πβπ)) | |
4 | 2, 3 | eqeq12d 2746 | . . . . 5 β’ (π = π β ((πβπ) = (πβπ) β (πβπ) = (πβπ))) |
5 | wlkp1.v | . . . . . 6 β’ π = (VtxβπΊ) | |
6 | wlkp1.i | . . . . . 6 β’ πΌ = (iEdgβπΊ) | |
7 | wlkp1.f | . . . . . 6 β’ (π β Fun πΌ) | |
8 | wlkp1.a | . . . . . 6 β’ (π β πΌ β Fin) | |
9 | wlkp1.b | . . . . . 6 β’ (π β π΅ β π) | |
10 | wlkp1.c | . . . . . 6 β’ (π β πΆ β π) | |
11 | wlkp1.d | . . . . . 6 β’ (π β Β¬ π΅ β dom πΌ) | |
12 | wlkp1.w | . . . . . 6 β’ (π β πΉ(WalksβπΊ)π) | |
13 | wlkp1.n | . . . . . 6 β’ π = (β―βπΉ) | |
14 | wlkp1.e | . . . . . 6 β’ (π β πΈ β (EdgβπΊ)) | |
15 | wlkp1.u | . . . . . 6 β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) | |
16 | wlkp1.h | . . . . . 6 β’ π» = (πΉ βͺ {β¨π, π΅β©}) | |
17 | wlkp1.q | . . . . . 6 β’ π = (π βͺ {β¨(π + 1), πΆβ©}) | |
18 | wlkp1.s | . . . . . 6 β’ (π β (Vtxβπ) = π) | |
19 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18 | wlkp1lem5 29201 | . . . . 5 β’ (π β βπ β (0...π)(πβπ) = (πβπ)) |
20 | wlkcl 29139 | . . . . . 6 β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β β0) | |
21 | 13 | eqcomi 2739 | . . . . . . . 8 β’ (β―βπΉ) = π |
22 | 21 | eleq1i 2822 | . . . . . . 7 β’ ((β―βπΉ) β β0 β π β β0) |
23 | nn0fz0 13603 | . . . . . . 7 β’ (π β β0 β π β (0...π)) | |
24 | 22, 23 | sylbb 218 | . . . . . 6 β’ ((β―βπΉ) β β0 β π β (0...π)) |
25 | 12, 20, 24 | 3syl 18 | . . . . 5 β’ (π β π β (0...π)) |
26 | 4, 19, 25 | rspcdva 3612 | . . . 4 β’ (π β (πβπ) = (πβπ)) |
27 | 17 | fveq1i 6891 | . . . . 5 β’ (πβ(π + 1)) = ((π βͺ {β¨(π + 1), πΆβ©})β(π + 1)) |
28 | ovex 7444 | . . . . . 6 β’ (π + 1) β V | |
29 | 5, 6, 7, 8, 9, 10, 11, 12, 13 | wlkp1lem1 29197 | . . . . . 6 β’ (π β Β¬ (π + 1) β dom π) |
30 | fsnunfv 7186 | . . . . . 6 β’ (((π + 1) β V β§ πΆ β π β§ Β¬ (π + 1) β dom π) β ((π βͺ {β¨(π + 1), πΆβ©})β(π + 1)) = πΆ) | |
31 | 28, 10, 29, 30 | mp3an2i 1464 | . . . . 5 β’ (π β ((π βͺ {β¨(π + 1), πΆβ©})β(π + 1)) = πΆ) |
32 | 27, 31 | eqtrid 2782 | . . . 4 β’ (π β (πβ(π + 1)) = πΆ) |
33 | 26, 32 | preq12d 4744 | . . 3 β’ (π β {(πβπ), (πβ(π + 1))} = {(πβπ), πΆ}) |
34 | fsnunfv 7186 | . . . 4 β’ ((π΅ β π β§ πΈ β (EdgβπΊ) β§ Β¬ π΅ β dom πΌ) β ((πΌ βͺ {β¨π΅, πΈβ©})βπ΅) = πΈ) | |
35 | 9, 14, 11, 34 | syl3anc 1369 | . . 3 β’ (π β ((πΌ βͺ {β¨π΅, πΈβ©})βπ΅) = πΈ) |
36 | 1, 33, 35 | 3sstr4d 4028 | . 2 β’ (π β {(πβπ), (πβ(π + 1))} β ((πΌ βͺ {β¨π΅, πΈβ©})βπ΅)) |
37 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16 | wlkp1lem3 29199 | . 2 β’ (π β ((iEdgβπ)β(π»βπ)) = ((πΌ βͺ {β¨π΅, πΈβ©})βπ΅)) |
38 | 36, 37 | sseqtrrd 4022 | 1 β’ (π β {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(π»βπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1539 β wcel 2104 Vcvv 3472 βͺ cun 3945 β wss 3947 {csn 4627 {cpr 4629 β¨cop 4633 class class class wbr 5147 dom cdm 5675 Fun wfun 6536 βcfv 6542 (class class class)co 7411 Fincfn 8941 0cc0 11112 1c1 11113 + caddc 11115 β0cn0 12476 ...cfz 13488 β―chash 14294 Vtxcvtx 28523 iEdgciedg 28524 Edgcedg 28574 Walkscwlks 29120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-wlks 29123 |
This theorem is referenced by: wlkp1lem8 29204 |
Copyright terms: Public domain | W3C validator |