![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem7 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 26989. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem7 | ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.x | . . 3 ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) | |
2 | fveq2 6437 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑄‘𝑘) = (𝑄‘𝑁)) | |
3 | fveq2 6437 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
4 | 2, 3 | eqeq12d 2840 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝑄‘𝑘) = (𝑃‘𝑘) ↔ (𝑄‘𝑁) = (𝑃‘𝑁))) |
5 | wlkp1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | wlkp1.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
8 | wlkp1.a | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
9 | wlkp1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) | |
10 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
11 | wlkp1.d | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) | |
12 | wlkp1.w | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
13 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
14 | wlkp1.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) | |
15 | wlkp1.u | . . . . . 6 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
16 | wlkp1.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
17 | wlkp1.q | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
18 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
19 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18 | wlkp1lem5 26985 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
20 | wlkcl 26920 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
21 | 13 | eqcomi 2834 | . . . . . . . 8 ⊢ (♯‘𝐹) = 𝑁 |
22 | 21 | eleq1i 2897 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0) |
23 | nn0fz0 12739 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
24 | 22, 23 | sylbb 211 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
25 | 12, 20, 24 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
26 | 4, 19, 25 | rspcdva 3532 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) = (𝑃‘𝑁)) |
27 | 17 | fveq1i 6438 | . . . . 5 ⊢ (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) |
28 | ovex 6942 | . . . . . 6 ⊢ (𝑁 + 1) ∈ V | |
29 | 5, 6, 7, 8, 9, 10, 11, 12, 13 | wlkp1lem1 26981 | . . . . . 6 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
30 | fsnunfv 6714 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) | |
31 | 28, 10, 29, 30 | mp3an2i 1594 | . . . . 5 ⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
32 | 27, 31 | syl5eq 2873 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶) |
33 | 26, 32 | preq12d 4496 | . . 3 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃‘𝑁), 𝐶}) |
34 | fsnunfv 6714 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) | |
35 | 9, 14, 11, 34 | syl3anc 1494 | . . 3 ⊢ (𝜑 → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
36 | 1, 33, 35 | 3sstr4d 3873 | . 2 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
37 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16 | wlkp1lem3 26983 | . 2 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
38 | 36, 37 | sseqtr4d 3867 | 1 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∪ cun 3796 ⊆ wss 3798 {csn 4399 {cpr 4401 〈cop 4405 class class class wbr 4875 dom cdm 5346 Fun wfun 6121 ‘cfv 6127 (class class class)co 6910 Fincfn 8228 0cc0 10259 1c1 10260 + caddc 10262 ℕ0cn0 11625 ...cfz 12626 ♯chash 13417 Vtxcvtx 26301 iEdgciedg 26302 Edgcedg 26352 Walkscwlks 26901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-ifp 1090 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-fzo 12768 df-hash 13418 df-word 13582 df-wlks 26904 |
This theorem is referenced by: wlkp1lem8 26988 |
Copyright terms: Public domain | W3C validator |