| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29609. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| Ref | Expression |
|---|---|
| wlkp1lem3 | ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.u | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
| 2 | wlkp1.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 4 | 3 | fveq1d 6860 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁)) |
| 5 | wlkp1.n | . . . . 5 ⊢ 𝑁 = (♯‘𝐹) | |
| 6 | 5 | fvexi 6872 | . . . 4 ⊢ 𝑁 ∈ V |
| 7 | wlkp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 9 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | 9 | wlkf 29542 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 11 | lencl 14498 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0) | |
| 12 | wrddm 14486 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 13 | fzonel 13634 | . . . . . . 7 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
| 14 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → 𝑁 = (♯‘𝐹)) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 16 | 14, 15 | eleq12d 2822 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → (𝑁 ∈ dom 𝐹 ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
| 17 | 13, 16 | mtbiri 327 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → ¬ 𝑁 ∈ dom 𝐹) |
| 18 | 11, 12, 17 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹) |
| 19 | 8, 10, 18 | 3syl 18 | . . . 4 ⊢ (𝜑 → ¬ 𝑁 ∈ dom 𝐹) |
| 20 | fsnunfv 7161 | . . . 4 ⊢ ((𝑁 ∈ V ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹) → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁) = 𝐵) | |
| 21 | 6, 7, 19, 20 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁) = 𝐵) |
| 22 | 4, 21 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) = 𝐵) |
| 23 | 1, 22 | fveq12d 6865 | 1 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 〈cop 4595 class class class wbr 5107 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 0cc0 11068 ℕ0cn0 12442 ..^cfzo 13615 ♯chash 14295 Word cword 14478 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 Walkscwlks 29524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-wlks 29527 |
| This theorem is referenced by: wlkp1lem7 29607 wlkp1lem8 29608 |
| Copyright terms: Public domain | W3C validator |