![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem3 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29433. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | β’ π = (VtxβπΊ) |
wlkp1.i | β’ πΌ = (iEdgβπΊ) |
wlkp1.f | β’ (π β Fun πΌ) |
wlkp1.a | β’ (π β πΌ β Fin) |
wlkp1.b | β’ (π β π΅ β π) |
wlkp1.c | β’ (π β πΆ β π) |
wlkp1.d | β’ (π β Β¬ π΅ β dom πΌ) |
wlkp1.w | β’ (π β πΉ(WalksβπΊ)π) |
wlkp1.n | β’ π = (β―βπΉ) |
wlkp1.e | β’ (π β πΈ β (EdgβπΊ)) |
wlkp1.x | β’ (π β {(πβπ), πΆ} β πΈ) |
wlkp1.u | β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
wlkp1.h | β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
Ref | Expression |
---|---|
wlkp1lem3 | β’ (π β ((iEdgβπ)β(π»βπ)) = ((πΌ βͺ {β¨π΅, πΈβ©})βπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.u | . 2 β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) | |
2 | wlkp1.h | . . . . 5 β’ π» = (πΉ βͺ {β¨π, π΅β©}) | |
3 | 2 | a1i 11 | . . . 4 β’ (π β π» = (πΉ βͺ {β¨π, π΅β©})) |
4 | 3 | fveq1d 6884 | . . 3 β’ (π β (π»βπ) = ((πΉ βͺ {β¨π, π΅β©})βπ)) |
5 | wlkp1.n | . . . . 5 β’ π = (β―βπΉ) | |
6 | 5 | fvexi 6896 | . . . 4 β’ π β V |
7 | wlkp1.b | . . . 4 β’ (π β π΅ β π) | |
8 | wlkp1.w | . . . . 5 β’ (π β πΉ(WalksβπΊ)π) | |
9 | wlkp1.i | . . . . . 6 β’ πΌ = (iEdgβπΊ) | |
10 | 9 | wlkf 29366 | . . . . 5 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
11 | lencl 14485 | . . . . . 6 β’ (πΉ β Word dom πΌ β (β―βπΉ) β β0) | |
12 | wrddm 14473 | . . . . . 6 β’ (πΉ β Word dom πΌ β dom πΉ = (0..^(β―βπΉ))) | |
13 | fzonel 13647 | . . . . . . 7 β’ Β¬ (β―βπΉ) β (0..^(β―βπΉ)) | |
14 | 5 | a1i 11 | . . . . . . . 8 β’ (((β―βπΉ) β β0 β§ dom πΉ = (0..^(β―βπΉ))) β π = (β―βπΉ)) |
15 | simpr 484 | . . . . . . . 8 β’ (((β―βπΉ) β β0 β§ dom πΉ = (0..^(β―βπΉ))) β dom πΉ = (0..^(β―βπΉ))) | |
16 | 14, 15 | eleq12d 2819 | . . . . . . 7 β’ (((β―βπΉ) β β0 β§ dom πΉ = (0..^(β―βπΉ))) β (π β dom πΉ β (β―βπΉ) β (0..^(β―βπΉ)))) |
17 | 13, 16 | mtbiri 327 | . . . . . 6 β’ (((β―βπΉ) β β0 β§ dom πΉ = (0..^(β―βπΉ))) β Β¬ π β dom πΉ) |
18 | 11, 12, 17 | syl2anc 583 | . . . . 5 β’ (πΉ β Word dom πΌ β Β¬ π β dom πΉ) |
19 | 8, 10, 18 | 3syl 18 | . . . 4 β’ (π β Β¬ π β dom πΉ) |
20 | fsnunfv 7178 | . . . 4 β’ ((π β V β§ π΅ β π β§ Β¬ π β dom πΉ) β ((πΉ βͺ {β¨π, π΅β©})βπ) = π΅) | |
21 | 6, 7, 19, 20 | mp3an2i 1462 | . . 3 β’ (π β ((πΉ βͺ {β¨π, π΅β©})βπ) = π΅) |
22 | 4, 21 | eqtrd 2764 | . 2 β’ (π β (π»βπ) = π΅) |
23 | 1, 22 | fveq12d 6889 | 1 β’ (π β ((iEdgβπ)β(π»βπ)) = ((πΌ βͺ {β¨π΅, πΈβ©})βπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 βͺ cun 3939 β wss 3941 {csn 4621 {cpr 4623 β¨cop 4627 class class class wbr 5139 dom cdm 5667 Fun wfun 6528 βcfv 6534 (class class class)co 7402 Fincfn 8936 0cc0 11107 β0cn0 12471 ..^cfzo 13628 β―chash 14291 Word cword 14466 Vtxcvtx 28750 iEdgciedg 28751 Edgcedg 28801 Walkscwlks 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-fzo 13629 df-hash 14292 df-word 14467 df-wlks 29351 |
This theorem is referenced by: wlkp1lem7 29431 wlkp1lem8 29432 |
Copyright terms: Public domain | W3C validator |