| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29659. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| Ref | Expression |
|---|---|
| wlkp1lem3 | ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.u | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
| 2 | wlkp1.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 4 | 3 | fveq1d 6824 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁)) |
| 5 | wlkp1.n | . . . . 5 ⊢ 𝑁 = (♯‘𝐹) | |
| 6 | 5 | fvexi 6836 | . . . 4 ⊢ 𝑁 ∈ V |
| 7 | wlkp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 9 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | 9 | wlkf 29594 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 11 | lencl 14440 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0) | |
| 12 | wrddm 14428 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 13 | fzonel 13573 | . . . . . . 7 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
| 14 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → 𝑁 = (♯‘𝐹)) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 16 | 14, 15 | eleq12d 2825 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → (𝑁 ∈ dom 𝐹 ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
| 17 | 13, 16 | mtbiri 327 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → ¬ 𝑁 ∈ dom 𝐹) |
| 18 | 11, 12, 17 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹) |
| 19 | 8, 10, 18 | 3syl 18 | . . . 4 ⊢ (𝜑 → ¬ 𝑁 ∈ dom 𝐹) |
| 20 | fsnunfv 7121 | . . . 4 ⊢ ((𝑁 ∈ V ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹) → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁) = 𝐵) | |
| 21 | 6, 7, 19, 20 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁) = 𝐵) |
| 22 | 4, 21 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) = 𝐵) |
| 23 | 1, 22 | fveq12d 6829 | 1 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ⊆ wss 3902 {csn 4576 {cpr 4578 〈cop 4582 class class class wbr 5091 dom cdm 5616 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 0cc0 11006 ℕ0cn0 12381 ..^cfzo 13554 ♯chash 14237 Word cword 14420 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-wlks 29579 |
| This theorem is referenced by: wlkp1lem7 29657 wlkp1lem8 29658 |
| Copyright terms: Public domain | W3C validator |