MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem3 Structured version   Visualization version   GIF version

Theorem wlkp1lem3 26976
Description: Lemma for wlkp1 26982. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵 ∈ V)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
Assertion
Ref Expression
wlkp1lem3 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))

Proof of Theorem wlkp1lem3
StepHypRef Expression
1 wlkp1.u . 2 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2 wlkp1.h . . . . 5 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
32a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
43fveq1d 6435 . . 3 (𝜑 → (𝐻𝑁) = ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑁))
5 wlkp1.n . . . . 5 𝑁 = (♯‘𝐹)
65fvexi 6447 . . . 4 𝑁 ∈ V
7 wlkp1.b . . . 4 (𝜑𝐵 ∈ V)
8 wlkp1.w . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
109wlkf 26912 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
11 lencl 13593 . . . . . 6 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
12 wrddm 13581 . . . . . 6 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
13 fzonel 12778 . . . . . . 7 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
145a1i 11 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → 𝑁 = (♯‘𝐹))
15 simpr 479 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → dom 𝐹 = (0..^(♯‘𝐹)))
1614, 15eleq12d 2900 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → (𝑁 ∈ dom 𝐹 ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1713, 16mtbiri 319 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → ¬ 𝑁 ∈ dom 𝐹)
1811, 12, 17syl2anc 581 . . . . 5 (𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹)
198, 10, 183syl 18 . . . 4 (𝜑 → ¬ 𝑁 ∈ dom 𝐹)
20 fsnunfv 6709 . . . 4 ((𝑁 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝑁 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑁) = 𝐵)
216, 7, 19, 20mp3an2i 1596 . . 3 (𝜑 → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑁) = 𝐵)
224, 21eqtrd 2861 . 2 (𝜑 → (𝐻𝑁) = 𝐵)
231, 22fveq12d 6440 1 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1658  wcel 2166  Vcvv 3414  cun 3796  wss 3798  {csn 4397  {cpr 4399  cop 4403   class class class wbr 4873  dom cdm 5342  Fun wfun 6117  cfv 6123  (class class class)co 6905  Fincfn 8222  0cc0 10252  0cn0 11618  ..^cfzo 12760  chash 13410  Word cword 13574  Vtxcvtx 26294  iEdgciedg 26295  Edgcedg 26345  Walkscwlks 26894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-wlks 26897
This theorem is referenced by:  wlkp1lem7  26980  wlkp1lem8  26981
  Copyright terms: Public domain W3C validator