| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29661. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| Ref | Expression |
|---|---|
| wlkp1lem3 | ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.u | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
| 2 | wlkp1.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 4 | 3 | fveq1d 6878 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁)) |
| 5 | wlkp1.n | . . . . 5 ⊢ 𝑁 = (♯‘𝐹) | |
| 6 | 5 | fvexi 6890 | . . . 4 ⊢ 𝑁 ∈ V |
| 7 | wlkp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 9 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | 9 | wlkf 29594 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 11 | lencl 14551 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0) | |
| 12 | wrddm 14539 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 13 | fzonel 13690 | . . . . . . 7 ⊢ ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)) | |
| 14 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → 𝑁 = (♯‘𝐹)) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 16 | 14, 15 | eleq12d 2828 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → (𝑁 ∈ dom 𝐹 ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))) |
| 17 | 13, 16 | mtbiri 327 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → ¬ 𝑁 ∈ dom 𝐹) |
| 18 | 11, 12, 17 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹) |
| 19 | 8, 10, 18 | 3syl 18 | . . . 4 ⊢ (𝜑 → ¬ 𝑁 ∈ dom 𝐹) |
| 20 | fsnunfv 7179 | . . . 4 ⊢ ((𝑁 ∈ V ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹) → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁) = 𝐵) | |
| 21 | 6, 7, 19, 20 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑁) = 𝐵) |
| 22 | 4, 21 | eqtrd 2770 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) = 𝐵) |
| 23 | 1, 22 | fveq12d 6883 | 1 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 〈cop 4607 class class class wbr 5119 dom cdm 5654 Fun wfun 6525 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 0cc0 11129 ℕ0cn0 12501 ..^cfzo 13671 ♯chash 14348 Word cword 14531 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-wlks 29579 |
| This theorem is referenced by: wlkp1lem7 29659 wlkp1lem8 29660 |
| Copyright terms: Public domain | W3C validator |