MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem3 Structured version   Visualization version   GIF version

Theorem wlkp1lem3 29655
Description: Lemma for wlkp1 29661. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
Assertion
Ref Expression
wlkp1lem3 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))

Proof of Theorem wlkp1lem3
StepHypRef Expression
1 wlkp1.u . 2 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2 wlkp1.h . . . . 5 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
32a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
43fveq1d 6878 . . 3 (𝜑 → (𝐻𝑁) = ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑁))
5 wlkp1.n . . . . 5 𝑁 = (♯‘𝐹)
65fvexi 6890 . . . 4 𝑁 ∈ V
7 wlkp1.b . . . 4 (𝜑𝐵𝑊)
8 wlkp1.w . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
109wlkf 29594 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
11 lencl 14551 . . . . . 6 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
12 wrddm 14539 . . . . . 6 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
13 fzonel 13690 . . . . . . 7 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
145a1i 11 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → 𝑁 = (♯‘𝐹))
15 simpr 484 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → dom 𝐹 = (0..^(♯‘𝐹)))
1614, 15eleq12d 2828 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → (𝑁 ∈ dom 𝐹 ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹))))
1713, 16mtbiri 327 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ dom 𝐹 = (0..^(♯‘𝐹))) → ¬ 𝑁 ∈ dom 𝐹)
1811, 12, 17syl2anc 584 . . . . 5 (𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹)
198, 10, 183syl 18 . . . 4 (𝜑 → ¬ 𝑁 ∈ dom 𝐹)
20 fsnunfv 7179 . . . 4 ((𝑁 ∈ V ∧ 𝐵𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑁) = 𝐵)
216, 7, 19, 20mp3an2i 1468 . . 3 (𝜑 → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑁) = 𝐵)
224, 21eqtrd 2770 . 2 (𝜑 → (𝐻𝑁) = 𝐵)
231, 22fveq12d 6883 1 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  {csn 4601  {cpr 4603  cop 4607   class class class wbr 5119  dom cdm 5654  Fun wfun 6525  cfv 6531  (class class class)co 7405  Fincfn 8959  0cc0 11129  0cn0 12501  ..^cfzo 13671  chash 14348  Word cword 14531  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  Walkscwlks 29576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-wlks 29579
This theorem is referenced by:  wlkp1lem7  29659  wlkp1lem8  29660
  Copyright terms: Public domain W3C validator