| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl2 | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5087 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17765 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 〈cop 4577 class class class wbr 5086 (class class class)co 7341 Catccat 17565 Func cfunc 17756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-dm 5621 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-func 17760 |
| This theorem is referenced by: cofid1a 49144 cofid2a 49145 cofidvala 49148 cofidf2a 49149 cofidval 49151 imaid 49186 imaf1co 49187 fthcomf 49189 upciclem3 49200 upciclem4 49201 upeu 49203 upeu2 49204 uobrcl 49225 upeu4 49228 uptrlem1 49242 natoppfb 49263 fuco11 49358 fuco11cl 49359 fuco21 49368 fuco11b 49369 fuco11bALT 49370 fucoid 49380 fucolid 49393 fucorid 49394 postcofval 49396 postcofcl 49397 precofval 49399 precofvalALT 49400 precofcl 49402 prcof1 49420 prcof2a 49421 prcof2 49422 prcofdiag1 49425 prcofdiag 49426 fucoppclem 49439 fucoppcid 49440 thincciso2 49487 isinito2 49531 isinito3 49532 eufunclem 49553 funcsn 49573 cofuterm 49577 isinito4 49579 lanval 49651 ranval 49652 lmdpropd 49689 cmdpropd 49690 concl 49693 coccl 49694 concom 49695 coccom 49696 islmd 49697 iscmd 49698 |
| Copyright terms: Public domain | W3C validator |