| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl2 | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5103 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17801 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 (class class class)co 7369 Catccat 17601 Func cfunc 17792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-func 17796 |
| This theorem is referenced by: cofid1a 49074 cofid2a 49075 cofidvala 49078 cofidf2a 49079 cofidval 49081 imaid 49116 imaf1co 49117 fthcomf 49119 upciclem3 49130 upciclem4 49131 upeu 49133 upeu2 49134 uobrcl 49155 upeu4 49158 uptrlem1 49172 natoppfb 49193 fuco11 49288 fuco11cl 49289 fuco21 49298 fuco11b 49299 fuco11bALT 49300 fucoid 49310 fucolid 49323 fucorid 49324 postcofval 49326 postcofcl 49327 precofval 49329 precofvalALT 49330 precofcl 49332 prcof1 49350 prcof2a 49351 prcof2 49352 prcofdiag1 49355 prcofdiag 49356 fucoppclem 49369 fucoppcid 49370 thincciso2 49417 isinito2 49461 isinito3 49462 eufunclem 49483 funcsn 49503 cofuterm 49507 isinito4 49509 lanval 49581 ranval 49582 lmdpropd 49619 cmdpropd 49620 concl 49623 coccl 49624 concom 49625 coccom 49626 islmd 49627 iscmd 49628 |
| Copyright terms: Public domain | W3C validator |