| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl2 | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5096 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17778 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 (class class class)co 7355 Catccat 17578 Func cfunc 17769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-dm 5631 df-iota 6445 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-func 17773 |
| This theorem is referenced by: cofid1a 49273 cofid2a 49274 cofidvala 49277 cofidf2a 49278 cofidval 49280 imaid 49315 imaf1co 49316 fthcomf 49318 upciclem3 49329 upciclem4 49330 upeu 49332 upeu2 49333 uobrcl 49354 upeu4 49357 uptrlem1 49371 natoppfb 49392 fuco11 49487 fuco11cl 49488 fuco21 49497 fuco11b 49498 fuco11bALT 49499 fucoid 49509 fucolid 49522 fucorid 49523 postcofval 49525 postcofcl 49526 precofval 49528 precofvalALT 49529 precofcl 49531 prcof1 49549 prcof2a 49550 prcof2 49551 prcofdiag1 49554 prcofdiag 49555 fucoppclem 49568 fucoppcid 49569 thincciso2 49616 isinito2 49660 isinito3 49661 eufunclem 49682 funcsn 49702 cofuterm 49706 isinito4 49708 lanval 49780 ranval 49781 lmdpropd 49818 cmdpropd 49819 concl 49822 coccl 49823 concom 49824 coccom 49825 islmd 49826 iscmd 49827 |
| Copyright terms: Public domain | W3C validator |