| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl2 | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5142 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17904 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 〈cop 4630 class class class wbr 5141 (class class class)co 7429 Catccat 17703 Func cfunc 17895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-xp 5689 df-dm 5693 df-iota 6512 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-func 17899 |
| This theorem is referenced by: upciclem3 48898 upciclem4 48899 upeu 48901 upeu2 48902 upeu4 48920 fuco11 48994 fuco11cl 48995 fuco21 49004 fuco11b 49005 fuco11bALT 49006 fucoid 49016 fucolid 49029 fucorid 49030 postcofval 49032 postcofcl 49033 precofval 49035 precofvalALT 49036 precofcl 49038 thincciso2 49077 |
| Copyright terms: Public domain | W3C validator |