| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl2 | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5110 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17831 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4597 class class class wbr 5109 (class class class)co 7389 Catccat 17631 Func cfunc 17822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-dm 5650 df-iota 6466 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-func 17826 |
| This theorem is referenced by: cofid1a 49089 cofid2a 49090 cofidvala 49093 cofidf2a 49094 cofidval 49096 imaid 49130 imaf1co 49131 fthcomf 49133 upciclem3 49141 upciclem4 49142 upeu 49144 upeu2 49145 uobrcl 49166 upeu4 49169 uptrlem1 49183 natoppfb 49202 fuco11 49297 fuco11cl 49298 fuco21 49307 fuco11b 49308 fuco11bALT 49309 fucoid 49319 fucolid 49332 fucorid 49333 postcofval 49335 postcofcl 49336 precofval 49338 precofvalALT 49339 precofcl 49341 prcof1 49359 prcof2a 49360 prcof2 49361 fucoppclem 49376 fucoppcid 49377 thincciso2 49424 isinito2 49468 isinito3 49469 eufunclem 49490 funcsn 49510 cofuterm 49514 isinito4 49516 lanval 49588 ranval 49589 lmdpropd 49625 cmdpropd 49626 concl 49629 coccl 49630 concom 49631 coccom 49632 islmd 49633 iscmd 49634 |
| Copyright terms: Public domain | W3C validator |