Proof of Theorem fuco11bALT
| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 7416 |
. 2
⊢ (𝐺𝑂𝐹) = (𝑂‘〈𝐺, 𝐹〉) |
| 2 | | relfunc 17879 |
. . . . 5
⊢ Rel
(𝐷 Func 𝐸) |
| 3 | | fuco11b.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| 4 | | 1st2nd 8046 |
. . . . 5
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 5 | 2, 3, 4 | sylancr 587 |
. . . 4
⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 6 | | relfunc 17879 |
. . . . 5
⊢ Rel
(𝐶 Func 𝐷) |
| 7 | | fuco11b.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 8 | | 1st2nd 8046 |
. . . . 5
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 9 | 6, 7, 8 | sylancr 587 |
. . . 4
⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 10 | 5, 9 | oveq12d 7431 |
. . 3
⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st
‘𝐺), (2nd
‘𝐺)〉
∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 11 | | 1st2ndbr 8049 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 12 | 6, 7, 11 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 13 | 12 | funcrcl2 48937 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 14 | | 1st2ndbr 8049 |
. . . . . . . 8
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 15 | 2, 3, 14 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 16 | 15 | funcrcl2 48937 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 17 | 15 | funcrcl3 48938 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 18 | | eqidd 2735 |
. . . . . 6
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) |
| 19 | 13, 16, 17, 18 | fucoelvv 49065 |
. . . . 5
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V ×
V)) |
| 20 | | 1st2nd2 8035 |
. . . . 5
⊢
((〈𝐶, 𝐷〉
∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
| 21 | 19, 20 | syl 17 |
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
| 22 | 5, 9 | opeq12d 4861 |
. . . 4
⊢ (𝜑 → 〈𝐺, 𝐹〉 = 〈〈(1st
‘𝐺), (2nd
‘𝐺)〉,
〈(1st ‘𝐹), (2nd ‘𝐹)〉〉) |
| 23 | 21, 12, 15, 22 | fuco11 49071 |
. . 3
⊢ (𝜑 → ((1st
‘(〈𝐶, 𝐷〉
∘F 𝐸))‘〈𝐺, 𝐹〉) = (〈(1st
‘𝐺), (2nd
‘𝐺)〉
∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 24 | | fuco11b.o |
. . . 4
⊢ (𝜑 → (1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)) = 𝑂) |
| 25 | 24 | fveq1d 6888 |
. . 3
⊢ (𝜑 → ((1st
‘(〈𝐶, 𝐷〉
∘F 𝐸))‘〈𝐺, 𝐹〉) = (𝑂‘〈𝐺, 𝐹〉)) |
| 26 | 10, 23, 25 | 3eqtr2rd 2776 |
. 2
⊢ (𝜑 → (𝑂‘〈𝐺, 𝐹〉) = (𝐺 ∘func 𝐹)) |
| 27 | 1, 26 | eqtrid 2781 |
1
⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) |