Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11bALT Structured version   Visualization version   GIF version

Theorem fuco11bALT 49006
Description: Alternate proof of fuco11b 49005. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fuco11b.o (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
fuco11b.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuco11b.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
fuco11bALT (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))

Proof of Theorem fuco11bALT
StepHypRef Expression
1 df-ov 7432 . 2 (𝐺𝑂𝐹) = (𝑂‘⟨𝐺, 𝐹⟩)
2 relfunc 17903 . . . . 5 Rel (𝐷 Func 𝐸)
3 fuco11b.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
4 1st2nd 8060 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
52, 3, 4sylancr 587 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
6 relfunc 17903 . . . . 5 Rel (𝐶 Func 𝐷)
7 fuco11b.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
8 1st2nd 8060 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
96, 7, 8sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
105, 9oveq12d 7447 . . 3 (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
11 1st2ndbr 8063 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
126, 7, 11sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1312funcrcl2 48885 . . . . . 6 (𝜑𝐶 ∈ Cat)
14 1st2ndbr 8063 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
152, 3, 14sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
1615funcrcl2 48885 . . . . . 6 (𝜑𝐷 ∈ Cat)
1715funcrcl3 48886 . . . . . 6 (𝜑𝐸 ∈ Cat)
18 eqidd 2737 . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
1913, 16, 17, 18fucoelvv 48988 . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
20 1st2nd2 8049 . . . . 5 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2119, 20syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
225, 9opeq12d 4879 . . . 4 (𝜑 → ⟨𝐺, 𝐹⟩ = ⟨⟨(1st𝐺), (2nd𝐺)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
2321, 12, 15, 22fuco11 48994 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝐺, 𝐹⟩) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
24 fuco11b.o . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
2524fveq1d 6906 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝐺, 𝐹⟩) = (𝑂‘⟨𝐺, 𝐹⟩))
2610, 23, 253eqtr2rd 2783 . 2 (𝜑 → (𝑂‘⟨𝐺, 𝐹⟩) = (𝐺func 𝐹))
271, 26eqtrid 2788 1 (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3479  cop 4630   class class class wbr 5141   × cxp 5681  Rel wrel 5688  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  Catccat 17703   Func cfunc 17895  func ccofu 17897  F cfuco 48984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-func 17899  df-cofu 17901  df-fuco 48985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator