Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11bALT Structured version   Visualization version   GIF version

Theorem fuco11bALT 49499
Description: Alternate proof of fuco11b 49498. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fuco11b.o (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
fuco11b.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuco11b.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
fuco11bALT (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))

Proof of Theorem fuco11bALT
StepHypRef Expression
1 df-ov 7358 . 2 (𝐺𝑂𝐹) = (𝑂‘⟨𝐺, 𝐹⟩)
2 relfunc 17777 . . . . 5 Rel (𝐷 Func 𝐸)
3 fuco11b.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
4 1st2nd 7980 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
52, 3, 4sylancr 587 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
6 relfunc 17777 . . . . 5 Rel (𝐶 Func 𝐷)
7 fuco11b.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
8 1st2nd 7980 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
96, 7, 8sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
105, 9oveq12d 7373 . . 3 (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
11 1st2ndbr 7983 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
126, 7, 11sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1312funcrcl2 49240 . . . . . 6 (𝜑𝐶 ∈ Cat)
14 1st2ndbr 7983 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
152, 3, 14sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
1615funcrcl2 49240 . . . . . 6 (𝜑𝐷 ∈ Cat)
1715funcrcl3 49241 . . . . . 6 (𝜑𝐸 ∈ Cat)
18 eqidd 2734 . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
1913, 16, 17, 18fucoelvv 49481 . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
20 1st2nd2 7969 . . . . 5 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2119, 20syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
225, 9opeq12d 4834 . . . 4 (𝜑 → ⟨𝐺, 𝐹⟩ = ⟨⟨(1st𝐺), (2nd𝐺)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
2321, 12, 15, 22fuco11 49487 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝐺, 𝐹⟩) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
24 fuco11b.o . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
2524fveq1d 6833 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝐺, 𝐹⟩) = (𝑂‘⟨𝐺, 𝐹⟩))
2610, 23, 253eqtr2rd 2775 . 2 (𝜑 → (𝑂‘⟨𝐺, 𝐹⟩) = (𝐺func 𝐹))
271, 26eqtrid 2780 1 (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583   class class class wbr 5095   × cxp 5619  Rel wrel 5626  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Catccat 17578   Func cfunc 17769  func ccofu 17771  F cfuco 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-func 17773  df-cofu 17775  df-fuco 49478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator