Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11bALT Structured version   Visualization version   GIF version

Theorem fuco11bALT 49309
Description: Alternate proof of fuco11b 49308. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fuco11b.o (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
fuco11b.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuco11b.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
fuco11bALT (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))

Proof of Theorem fuco11bALT
StepHypRef Expression
1 df-ov 7392 . 2 (𝐺𝑂𝐹) = (𝑂‘⟨𝐺, 𝐹⟩)
2 relfunc 17830 . . . . 5 Rel (𝐷 Func 𝐸)
3 fuco11b.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
4 1st2nd 8020 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
52, 3, 4sylancr 587 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
6 relfunc 17830 . . . . 5 Rel (𝐶 Func 𝐷)
7 fuco11b.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
8 1st2nd 8020 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
96, 7, 8sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
105, 9oveq12d 7407 . . 3 (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
11 1st2ndbr 8023 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
126, 7, 11sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1312funcrcl2 49056 . . . . . 6 (𝜑𝐶 ∈ Cat)
14 1st2ndbr 8023 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
152, 3, 14sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
1615funcrcl2 49056 . . . . . 6 (𝜑𝐷 ∈ Cat)
1715funcrcl3 49057 . . . . . 6 (𝜑𝐸 ∈ Cat)
18 eqidd 2731 . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
1913, 16, 17, 18fucoelvv 49291 . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
20 1st2nd2 8009 . . . . 5 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2119, 20syl 17 . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
225, 9opeq12d 4847 . . . 4 (𝜑 → ⟨𝐺, 𝐹⟩ = ⟨⟨(1st𝐺), (2nd𝐺)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
2321, 12, 15, 22fuco11 49297 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝐺, 𝐹⟩) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
24 fuco11b.o . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)
2524fveq1d 6862 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝐺, 𝐹⟩) = (𝑂‘⟨𝐺, 𝐹⟩))
2610, 23, 253eqtr2rd 2772 . 2 (𝜑 → (𝑂‘⟨𝐺, 𝐹⟩) = (𝐺func 𝐹))
271, 26eqtrid 2777 1 (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4597   class class class wbr 5109   × cxp 5638  Rel wrel 5645  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Catccat 17631   Func cfunc 17822  func ccofu 17824  F cfuco 49287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-func 17826  df-cofu 17828  df-fuco 49288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator