| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > natrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| natrcl2.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natrcl2.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Ref | Expression |
|---|---|
| natrcl2 | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 2 | natrcl2.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 3 | 2 | natrcl 17970 | . . . 4 ⊢ (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
| 5 | 4 | simpld 494 | . 2 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 6 | df-br 5126 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4614 class class class wbr 5125 (class class class)co 7414 Func cfunc 17871 Nat cnat 17961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-ixp 8921 df-func 17875 df-nat 17963 |
| This theorem is referenced by: fuco22 48994 fuco22natlem1 48997 fuco22natlem2 48998 fuco22natlem3 48999 fuco22natlem 49000 fuco23alem 49006 fucolid 49016 fucorid 49017 diag2f1olem 49131 |
| Copyright terms: Public domain | W3C validator |