Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natrcl2 Structured version   Visualization version   GIF version

Theorem natrcl2 49255
Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.)
Hypotheses
Ref Expression
natrcl2.n 𝑁 = (𝐶 Nat 𝐷)
natrcl2.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
Assertion
Ref Expression
natrcl2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)

Proof of Theorem natrcl2
StepHypRef Expression
1 natrcl2.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl2.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
32natrcl 17857 . . . 4 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
41, 3syl 17 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
54simpld 494 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
6 df-br 5092 . 2 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
75, 6sylibr 234 1 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  (class class class)co 7346   Func cfunc 17758   Nat cnat 17848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-func 17762  df-nat 17850
This theorem is referenced by:  natoppf  49260  fuco22  49370  fuco22natlem1  49373  fuco22natlem2  49374  fuco22natlem3  49375  fuco22natlem  49376  fuco23alem  49382  fucolid  49392  fucorid  49393  diag2f1olem  49567  funcsn  49572  coccl  49693  coccom  49695
  Copyright terms: Public domain W3C validator