| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > natrcl2 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| natrcl2.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natrcl2.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Ref | Expression |
|---|---|
| natrcl2 | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 2 | natrcl2.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 3 | 2 | natrcl 17915 | . . . 4 ⊢ (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
| 5 | 4 | simpld 494 | . 2 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 6 | df-br 5108 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 (class class class)co 7387 Func cfunc 17816 Nat cnat 17906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-ixp 8871 df-func 17820 df-nat 17908 |
| This theorem is referenced by: natoppf 49218 fuco22 49328 fuco22natlem1 49331 fuco22natlem2 49332 fuco22natlem3 49333 fuco22natlem 49334 fuco23alem 49340 fucolid 49350 fucorid 49351 diag2f1olem 49525 funcsn 49530 coccl 49651 coccom 49653 |
| Copyright terms: Public domain | W3C validator |