Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22a Structured version   Visualization version   GIF version

Theorem fuco22a 49336
Description: The morphism part of the functor composition bifunctor. See also fuco22 49325. (Contributed by Zhi Wang, 1-Oct-2025.)
Hypotheses
Ref Expression
fuco22a.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22a.u (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
fuco22a.v (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
fuco22a.a (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
fuco22a.b (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
Assertion
Ref Expression
fuco22a (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st𝑀)‘𝑥))(⟨((1st𝐾)‘((1st𝐹)‘𝑥)), ((1st𝐾)‘((1st𝑀)‘𝑥))⟩(comp‘𝐸)((1st𝑅)‘((1st𝑀)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝐾)((1st𝑀)‘𝑥))‘(𝐴𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑅   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑂(𝑥)

Proof of Theorem fuco22a
StepHypRef Expression
1 fuco22a.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco22a.u . . 3 (𝜑𝑈 = ⟨𝐾, 𝐹⟩)
3 relfunc 17787 . . . . . . 7 Rel (𝐷 Func 𝐸)
4 df-rel 5630 . . . . . . 7 (Rel (𝐷 Func 𝐸) ↔ (𝐷 Func 𝐸) ⊆ (V × V))
53, 4mpbi 230 . . . . . 6 (𝐷 Func 𝐸) ⊆ (V × V)
6 fuco22a.b . . . . . . . 8 (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))
7 eqid 2729 . . . . . . . . 9 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
87natrcl 17878 . . . . . . . 8 (𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
96, 8syl 17 . . . . . . 7 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸)))
109simpld 494 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
115, 10sselid 3935 . . . . 5 (𝜑𝐾 ∈ (V × V))
12 1st2ndb 7971 . . . . 5 (𝐾 ∈ (V × V) ↔ 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
1311, 12sylib 218 . . . 4 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
14 relfunc 17787 . . . . . . 7 Rel (𝐶 Func 𝐷)
15 df-rel 5630 . . . . . . 7 (Rel (𝐶 Func 𝐷) ↔ (𝐶 Func 𝐷) ⊆ (V × V))
1614, 15mpbi 230 . . . . . 6 (𝐶 Func 𝐷) ⊆ (V × V)
17 fuco22a.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))
18 eqid 2729 . . . . . . . . 9 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
1918natrcl 17878 . . . . . . . 8 (𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
2017, 19syl 17 . . . . . . 7 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷)))
2120simpld 494 . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2216, 21sselid 3935 . . . . 5 (𝜑𝐹 ∈ (V × V))
23 1st2ndb 7971 . . . . 5 (𝐹 ∈ (V × V) ↔ 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2422, 23sylib 218 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2513, 24opeq12d 4835 . . 3 (𝜑 → ⟨𝐾, 𝐹⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
262, 25eqtrd 2764 . 2 (𝜑𝑈 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
27 fuco22a.v . . 3 (𝜑𝑉 = ⟨𝑅, 𝑀⟩)
289simprd 495 . . . . . 6 (𝜑𝑅 ∈ (𝐷 Func 𝐸))
295, 28sselid 3935 . . . . 5 (𝜑𝑅 ∈ (V × V))
30 1st2ndb 7971 . . . . 5 (𝑅 ∈ (V × V) ↔ 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3129, 30sylib 218 . . . 4 (𝜑𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3220simprd 495 . . . . . 6 (𝜑𝑀 ∈ (𝐶 Func 𝐷))
3316, 32sselid 3935 . . . . 5 (𝜑𝑀 ∈ (V × V))
34 1st2ndb 7971 . . . . 5 (𝑀 ∈ (V × V) ↔ 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
3533, 34sylib 218 . . . 4 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
3631, 35opeq12d 4835 . . 3 (𝜑 → ⟨𝑅, 𝑀⟩ = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
3727, 36eqtrd 2764 . 2 (𝜑𝑉 = ⟨⟨(1st𝑅), (2nd𝑅)⟩, ⟨(1st𝑀), (2nd𝑀)⟩⟩)
3818, 17nat1st2nd 17879 . 2 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐶 Nat 𝐷)⟨(1st𝑀), (2nd𝑀)⟩))
397, 6nat1st2nd 17879 . 2 (𝜑𝐵 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑅), (2nd𝑅)⟩))
401, 26, 37, 38, 39fuco22 49325 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st𝑀)‘𝑥))(⟨((1st𝐾)‘((1st𝐹)‘𝑥)), ((1st𝐾)‘((1st𝑀)‘𝑥))⟩(comp‘𝐸)((1st𝑅)‘((1st𝑀)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝐾)((1st𝑀)‘𝑥))‘(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  cop 4585  cmpt 5176   × cxp 5621  Rel wrel 5628  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  compcco 17191   Func cfunc 17779   Nat cnat 17869  F cfuco 49302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-ixp 8832  df-func 17783  df-cofu 17785  df-nat 17871  df-fuco 49303
This theorem is referenced by:  fucocolem2  49340  fucocolem4  49342  fucolid  49347  fucorid  49348  precofvalALT  49354
  Copyright terms: Public domain W3C validator