Proof of Theorem fuco22a
| Step | Hyp | Ref
| Expression |
| 1 | | fuco22a.o |
. 2
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 2 | | fuco22a.u |
. . 3
⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) |
| 3 | | relfunc 17879 |
. . . . . . 7
⊢ Rel
(𝐷 Func 𝐸) |
| 4 | | df-rel 5674 |
. . . . . . 7
⊢ (Rel
(𝐷 Func 𝐸) ↔ (𝐷 Func 𝐸) ⊆ (V × V)) |
| 5 | 3, 4 | mpbi 230 |
. . . . . 6
⊢ (𝐷 Func 𝐸) ⊆ (V × V) |
| 6 | | fuco22a.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) |
| 7 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
| 8 | 7 | natrcl 17970 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸))) |
| 9 | 6, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑅 ∈ (𝐷 Func 𝐸))) |
| 10 | 9 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 11 | 5, 10 | sselid 3963 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (V × V)) |
| 12 | | 1st2ndb 8037 |
. . . . 5
⊢ (𝐾 ∈ (V × V) ↔
𝐾 = 〈(1st
‘𝐾), (2nd
‘𝐾)〉) |
| 13 | 11, 12 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 14 | | relfunc 17879 |
. . . . . . 7
⊢ Rel
(𝐶 Func 𝐷) |
| 15 | | df-rel 5674 |
. . . . . . 7
⊢ (Rel
(𝐶 Func 𝐷) ↔ (𝐶 Func 𝐷) ⊆ (V × V)) |
| 16 | 14, 15 | mpbi 230 |
. . . . . 6
⊢ (𝐶 Func 𝐷) ⊆ (V × V) |
| 17 | | fuco22a.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) |
| 18 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
| 19 | 18 | natrcl 17970 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷))) |
| 20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑀 ∈ (𝐶 Func 𝐷))) |
| 21 | 20 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 22 | 16, 21 | sselid 3963 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| 23 | | 1st2ndb 8037 |
. . . . 5
⊢ (𝐹 ∈ (V × V) ↔
𝐹 = 〈(1st
‘𝐹), (2nd
‘𝐹)〉) |
| 24 | 22, 23 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 25 | 13, 24 | opeq12d 4863 |
. . 3
⊢ (𝜑 → 〈𝐾, 𝐹〉 = 〈〈(1st
‘𝐾), (2nd
‘𝐾)〉,
〈(1st ‘𝐹), (2nd ‘𝐹)〉〉) |
| 26 | 2, 25 | eqtrd 2769 |
. 2
⊢ (𝜑 → 𝑈 = 〈〈(1st ‘𝐾), (2nd ‘𝐾)〉, 〈(1st
‘𝐹), (2nd
‘𝐹)〉〉) |
| 27 | | fuco22a.v |
. . 3
⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) |
| 28 | 9 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ (𝐷 Func 𝐸)) |
| 29 | 5, 28 | sselid 3963 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (V × V)) |
| 30 | | 1st2ndb 8037 |
. . . . 5
⊢ (𝑅 ∈ (V × V) ↔
𝑅 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉) |
| 31 | 29, 30 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
| 32 | 20 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝐶 Func 𝐷)) |
| 33 | 16, 32 | sselid 3963 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (V × V)) |
| 34 | | 1st2ndb 8037 |
. . . . 5
⊢ (𝑀 ∈ (V × V) ↔
𝑀 = 〈(1st
‘𝑀), (2nd
‘𝑀)〉) |
| 35 | 33, 34 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝑀 = 〈(1st ‘𝑀), (2nd ‘𝑀)〉) |
| 36 | 31, 35 | opeq12d 4863 |
. . 3
⊢ (𝜑 → 〈𝑅, 𝑀〉 = 〈〈(1st
‘𝑅), (2nd
‘𝑅)〉,
〈(1st ‘𝑀), (2nd ‘𝑀)〉〉) |
| 37 | 27, 36 | eqtrd 2769 |
. 2
⊢ (𝜑 → 𝑉 = 〈〈(1st ‘𝑅), (2nd ‘𝑅)〉, 〈(1st
‘𝑀), (2nd
‘𝑀)〉〉) |
| 38 | 18, 17 | nat1st2nd 17971 |
. 2
⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 Nat 𝐷)〈(1st ‘𝑀), (2nd ‘𝑀)〉)) |
| 39 | 7, 6 | nat1st2nd 17971 |
. 2
⊢ (𝜑 → 𝐵 ∈ (〈(1st ‘𝐾), (2nd ‘𝐾)〉(𝐷 Nat 𝐸)〈(1st ‘𝑅), (2nd ‘𝑅)〉)) |
| 40 | 1, 26, 37, 38, 39 | fuco22 48994 |
1
⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st ‘𝑀)‘𝑥))(〈((1st ‘𝐾)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝐾)‘((1st ‘𝑀)‘𝑥))〉(comp‘𝐸)((1st ‘𝑅)‘((1st ‘𝑀)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝐾)((1st ‘𝑀)‘𝑥))‘(𝐴‘𝑥))))) |