Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoco Structured version   Visualization version   GIF version

Theorem fucoco 49252
Description: Composition in the source category is mapped to composition in the target. See also fucoco2 49253. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucoco.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco.oq = (comp‘𝑄)
fucoco.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco.ot · = (comp‘𝑇)
Assertion
Ref Expression
fucoco (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))

Proof of Theorem fucoco
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . . 9 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2 fucoco.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
31, 2nat1st2nd 17922 . . . . . . . 8 (𝜑𝑉 ∈ (⟨(1st𝐿), (2nd𝐿)⟩(𝐶 Nat 𝐷)⟨(1st𝑁), (2nd𝑁)⟩))
43adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑉 ∈ (⟨(1st𝐿), (2nd𝐿)⟩(𝐶 Nat 𝐷)⟨(1st𝑁), (2nd𝑁)⟩))
5 eqid 2730 . . . . . . . . 9 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
6 fucoco.r . . . . . . . . 9 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
75, 6nat1st2nd 17922 . . . . . . . 8 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 Nat 𝐸)⟨(1st𝐾), (2nd𝐾)⟩))
87adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 Nat 𝐸)⟨(1st𝐾), (2nd𝐾)⟩))
9 simpr 484 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑝 ∈ (Base‘𝐶))
10 eqid 2730 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
114, 8, 9, 10fuco23alem 49246 . . . . . 6 ((𝜑𝑝 ∈ (Base‘𝐶)) → ((𝑅‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐹)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐹)((1st𝑁)‘𝑝))‘(𝑉𝑝))) = (((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))(𝑅‘((1st𝐿)‘𝑝))))
1211oveq1d 7409 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → (((𝑅‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐹)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐹)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝))) = ((((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))(𝑅‘((1st𝐿)‘𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝))))
1312oveq2d 7410 . . . 4 ((𝜑𝑝 ∈ (Base‘𝐶)) → ((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))(((𝑅‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐹)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐹)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝)))) = ((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))(𝑅‘((1st𝐿)‘𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝)))))
146adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
15 fucoco.s . . . . . 6 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
1615adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
17 fucoco.u . . . . . 6 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
1817adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
192adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
205natrcl 17921 . . . . . . . 8 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
216, 20syl 17 . . . . . . 7 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
2221simprd 495 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
2322adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝐾 ∈ (𝐷 Func 𝐸))
241natrcl 17921 . . . . . . . 8 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2515, 24syl 17 . . . . . . 7 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2625simprd 495 . . . . . 6 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
2726adantr 480 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → 𝐿 ∈ (𝐶 Func 𝐷))
28 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
29 eqid 2730 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
30 eqid 2730 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
3122func1st2nd 48993 . . . . . . . 8 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
3231adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝐶)) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
33 eqid 2730 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
3426func1st2nd 48993 . . . . . . . . 9 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
3533, 28, 34funcf1 17834 . . . . . . . 8 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
3635ffvelcdmda 7063 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝐶)) → ((1st𝐿)‘𝑝) ∈ (Base‘𝐷))
371natrcl 17921 . . . . . . . . . . . 12 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
382, 37syl 17 . . . . . . . . . . 11 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3938simprd 495 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
4039func1st2nd 48993 . . . . . . . . 9 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4133, 28, 40funcf1 17834 . . . . . . . 8 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4241ffvelcdmda 7063 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝐶)) → ((1st𝑁)‘𝑝) ∈ (Base‘𝐷))
4328, 29, 30, 32, 36, 42funcf2 17836 . . . . . 6 ((𝜑𝑝 ∈ (Base‘𝐶)) → (((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝)):(((1st𝐿)‘𝑝)(Hom ‘𝐷)((1st𝑁)‘𝑝))⟶(((1st𝐾)‘((1st𝐿)‘𝑝))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝))))
441, 4, 33, 29, 9natcl 17924 . . . . . 6 ((𝜑𝑝 ∈ (Base‘𝐶)) → (𝑉𝑝) ∈ (((1st𝐿)‘𝑝)(Hom ‘𝐷)((1st𝑁)‘𝑝)))
4543, 44ffvelcdmd 7064 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → ((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝)) ∈ (((1st𝐾)‘((1st𝐿)‘𝑝))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝))))
465, 8, 28, 30, 36natcl 17924 . . . . 5 ((𝜑𝑝 ∈ (Base‘𝐶)) → (𝑅‘((1st𝐿)‘𝑝)) ∈ (((1st𝐹)‘((1st𝐿)‘𝑝))(Hom ‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑝))))
4714, 16, 18, 19, 9, 23, 27, 45, 46fucocolem1 49248 . . . 4 ((𝜑𝑝 ∈ (Base‘𝐶)) → (((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐾)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((𝑅‘((1st𝐿)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝)))) = ((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))(𝑅‘((1st𝐿)‘𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝)))))
4813, 47eqtr4d 2768 . . 3 ((𝜑𝑝 ∈ (Base‘𝐶)) → ((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))(((𝑅‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐹)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐹)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝)))) = (((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐾)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((𝑅‘((1st𝐿)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝)))))
4948mpteq2dva 5208 . 2 (𝜑 → (𝑝 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))(((𝑅‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐹)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐹)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝))))) = (𝑝 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐾)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((𝑅‘((1st𝐿)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝))))))
50 fucoco.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
51 fucoco.x . . 3 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
52 fucoco.y . . 3 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
53 fucoco.z . . 3 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
54 fucoco.a . . 3 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
55 fucoco.b . . 3 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
56 fucoco.t . . 3 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
57 fucoco.ot . . 3 · = (comp‘𝑇)
58 eqid 2730 . . 3 (comp‘𝐷) = (comp‘𝐷)
596, 15, 17, 2, 50, 51, 52, 53, 54, 55, 56, 57, 58fucocolem3 49250 . 2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑝 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))(((𝑅‘((1st𝑁)‘𝑝))(⟨((1st𝐹)‘((1st𝐿)‘𝑝)), ((1st𝐹)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐹)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝))))))
60 fucoco.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
61 fucoco.oq . . 3 = (comp‘𝑄)
626, 15, 17, 2, 50, 51, 52, 53, 54, 55, 60, 61fucocolem4 49251 . 2 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑝 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑝))(⟨((1st𝐾)‘((1st𝐿)‘𝑝)), ((1st𝐾)‘((1st𝑁)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((((1st𝐿)‘𝑝)(2nd𝐾)((1st𝑁)‘𝑝))‘(𝑉𝑝)))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐾)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑝)))((𝑅‘((1st𝐿)‘𝑝))(⟨((1st𝐹)‘((1st𝐺)‘𝑝)), ((1st𝐹)‘((1st𝐿)‘𝑝))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑝)))((((1st𝐺)‘𝑝)(2nd𝐹)((1st𝐿)‘𝑝))‘(𝑆𝑝))))))
6349, 59, 623eqtr4d 2775 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4603   class class class wbr 5115  cmpt 5196  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822   Nat cnat 17912   FuncCat cfuc 17913   ×c cxpc 18135  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-nat 17914  df-fuc 17915  df-xpc 18139  df-fuco 49212
This theorem is referenced by:  fucoco2  49253
  Copyright terms: Public domain W3C validator