MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2nd Structured version   Visualization version   GIF version

Theorem prf2nd 17564
Description: Cancellation of pairing with second projection. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prf1st.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prf1st.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prf1st.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prf2nd (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺)

Proof of Theorem prf2nd
Dummy variables 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (𝐷 ×c 𝐸) = (𝐷 ×c 𝐸)
2 eqid 2738 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2738 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
41, 2, 3xpcbas 17537 . . . . . . 7 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘(𝐷 ×c 𝐸))
5 eqid 2738 . . . . . . 7 (Hom ‘(𝐷 ×c 𝐸)) = (Hom ‘(𝐷 ×c 𝐸))
6 prf1st.c . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 17231 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simprd 499 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
109adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
11 prf1st.d . . . . . . . . . 10 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
12 funcrcl 17231 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simprd 499 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
1514adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
16 eqid 2738 . . . . . . 7 (𝐷 2ndF 𝐸) = (𝐷 2ndF 𝐸)
17 eqid 2738 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
18 relfunc 17230 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
19 1st2ndbr 7759 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 6, 19sylancr 590 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2117, 2, 20funcf1 17234 . . . . . . . . 9 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelrnda 6855 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
23 relfunc 17230 . . . . . . . . . . 11 Rel (𝐶 Func 𝐸)
24 1st2ndbr 7759 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2523, 11, 24sylancr 590 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2617, 3, 25funcf1 17234 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
2726ffvelrnda 6855 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
2822, 27opelxpd 5557 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
291, 4, 5, 10, 15, 16, 282ndf1 17554 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = (2nd ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
30 fvex 6681 . . . . . . 7 ((1st𝐹)‘𝑥) ∈ V
31 fvex 6681 . . . . . . 7 ((1st𝐺)‘𝑥) ∈ V
3230, 31op2nd 7716 . . . . . 6 (2nd ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐺)‘𝑥)
3329, 32eqtrdi 2789 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐺)‘𝑥))
3433mpteq2dva 5122 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
35 prf1st.p . . . . . . 7 𝑃 = (𝐹 ⟨,⟩F 𝐺)
36 eqid 2738 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3735, 17, 36, 6, 11prfval 17558 . . . . . 6 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
38 fvex 6681 . . . . . . . 8 (Base‘𝐶) ∈ V
3938mptex 6990 . . . . . . 7 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
4038, 38mpoex 7796 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
4139, 40op1std 7717 . . . . . 6 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
4237, 41syl 17 . . . . 5 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
43 relfunc 17230 . . . . . . . 8 Rel ((𝐷 ×c 𝐸) Func 𝐸)
441, 9, 14, 162ndfcl 17557 . . . . . . . 8 (𝜑 → (𝐷 2ndF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐸))
45 1st2ndbr 7759 . . . . . . . 8 ((Rel ((𝐷 ×c 𝐸) Func 𝐸) ∧ (𝐷 2ndF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐸)) → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
4643, 44, 45sylancr 590 . . . . . . 7 (𝜑 → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
474, 3, 46funcf1 17234 . . . . . 6 (𝜑 → (1st ‘(𝐷 2ndF 𝐸)):((Base‘𝐷) × (Base‘𝐸))⟶(Base‘𝐸))
4847feqmptd 6731 . . . . 5 (𝜑 → (1st ‘(𝐷 2ndF 𝐸)) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐸)) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘𝑢)))
49 fveq2 6668 . . . . 5 (𝑢 = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ → ((1st ‘(𝐷 2ndF 𝐸))‘𝑢) = ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
5028, 42, 48, 49fmptco 6895 . . . 4 (𝜑 → ((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)))
5126feqmptd 6731 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
5234, 50, 513eqtr4d 2783 . . 3 (𝜑 → ((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)) = (1st𝐺))
539ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
5414ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat)
55 relfunc 17230 . . . . . . . . . . . . . . . 16 Rel (𝐶 Func (𝐷 ×c 𝐸))
5635, 1, 6, 11prfcl 17562 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸)))
57 1st2ndbr 7759 . . . . . . . . . . . . . . . 16 ((Rel (𝐶 Func (𝐷 ×c 𝐸)) ∧ 𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5855, 56, 57sylancr 590 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5917, 4, 58funcf1 17234 . . . . . . . . . . . . . 14 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
6059ffvelrnda 6855 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6160adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6261adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6359ffvelrnda 6855 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6463adantrl 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6564adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
661, 4, 5, 53, 54, 16, 62, 652ndf2 17555 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) = (2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))))
6766fveq1d 6670 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
6858adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
69 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
70 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
7117, 36, 5, 68, 69, 70funcf2 17236 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7271ffvelrnda 6855 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) ∈ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7372fvresd 6688 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
746ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝐷))
7511ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ (𝐶 Func 𝐸))
7669adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
7770adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
78 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7935, 17, 36, 74, 75, 76, 77, 78prf2 17561 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
8079fveq2d 6672 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
81 fvex 6681 . . . . . . . . . . 11 ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ V
82 fvex 6681 . . . . . . . . . . 11 ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ V
8381, 82op2nd 7716 . . . . . . . . . 10 (2nd ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
8480, 83eqtrdi 2789 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐺)𝑦)‘𝑓))
8567, 73, 843eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐺)𝑦)‘𝑓))
8685mpteq2dva 5122 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑓)))
87 eqid 2738 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
8846adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
894, 5, 87, 88, 61, 64funcf2 17236 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐸)((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑦))))
90 fcompt 6899 . . . . . . . 8 (((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐸)((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑦))) ∧ (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9189, 71, 90syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9225adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
9317, 36, 87, 92, 69, 70funcf2 17236 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
9493feqmptd 6731 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑓)))
9586, 91, 943eqtr4d 2783 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐺)𝑦))
96953impb 1116 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐺)𝑦))
9796mpoeq3dva 7239 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
9817, 25funcfn2 17237 . . . . 5 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
99 fnov 7291 . . . . 5 ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
10098, 99sylib 221 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
10197, 100eqtr4d 2776 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (2nd𝐺))
10252, 101opeq12d 4766 . 2 (𝜑 → ⟨((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩ = ⟨(1st𝐺), (2nd𝐺)⟩)
10317, 56, 44cofuval 17250 . 2 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = ⟨((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩)
104 1st2nd 7756 . . 3 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
10523, 11, 104sylancr 590 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
106102, 103, 1053eqtr4d 2783 1 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  cop 4519   class class class wbr 5027  cmpt 5107   × cxp 5517  cres 5521  ccom 5523  Rel wrel 5524   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7164  cmpo 7166  1st c1st 7705  2nd c2nd 7706  Basecbs 16579  Hom chom 16672  Catccat 17031   Func cfunc 17222  func ccofu 17224   ×c cxpc 17527   2ndF c2ndf 17529   ⟨,⟩F cprf 17530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-hom 16685  df-cco 16686  df-cat 17035  df-cid 17036  df-func 17226  df-cofu 17228  df-xpc 17531  df-2ndf 17533  df-prf 17534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator