MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofulid Structured version   Visualization version   GIF version

Theorem cofulid 17776
Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofulid.g (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofulid.1 𝐼 = (idfunc𝐷)
Assertion
Ref Expression
cofulid (𝜑 → (𝐼func 𝐹) = 𝐹)

Proof of Theorem cofulid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofulid.1 . . . . . 6 𝐼 = (idfunc𝐷)
2 eqid 2736 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofulid.g . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4 funcrcl 17749 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
65simprd 496 . . . . . 6 (𝜑𝐷 ∈ Cat)
71, 2, 6idfu1st 17765 . . . . 5 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
87coeq1d 5817 . . . 4 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)))
9 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
10 relfunc 17748 . . . . . . 7 Rel (𝐶 Func 𝐷)
11 1st2ndbr 7974 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1210, 3, 11sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
139, 2, 12funcf1 17752 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
14 fcoi2 6717 . . . . 5 ((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
1513, 14syl 17 . . . 4 (𝜑 → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
168, 15eqtrd 2776 . . 3 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (1st𝐹))
1763ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 eqid 2736 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
1913ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
20193adant3 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
2113ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
22213adant2 1131 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
231, 2, 17, 18, 20, 22idfu2nd 17763 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
2423coeq1d 5817 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)))
25 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
26123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
27 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
28 simp3 1138 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
299, 25, 18, 26, 27, 28funcf2 17754 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
30 fcoi2 6717 . . . . . . 7 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3129, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3224, 31eqtrd 2776 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3332mpoeq3dva 7434 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
349, 12funcfn2 17755 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
35 fnov 7487 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3634, 35sylib 217 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3733, 36eqtr4d 2779 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (2nd𝐹))
3816, 37opeq12d 4838 . 2 (𝜑 → ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
391idfucl 17767 . . . 4 (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷))
406, 39syl 17 . . 3 (𝜑𝐼 ∈ (𝐷 Func 𝐷))
419, 3, 40cofuval 17768 . 2 (𝜑 → (𝐼func 𝐹) = ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
42 1st2nd 7971 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4310, 3, 42sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4438, 41, 433eqtr4d 2786 1 (𝜑 → (𝐼func 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4592   class class class wbr 5105   I cid 5530   × cxp 5631  cres 5635  ccom 5637  Rel wrel 5638   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  Hom chom 17144  Catccat 17544   Func cfunc 17740  idfunccidfu 17741  func ccofu 17742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-ixp 8836  df-cat 17548  df-cid 17549  df-func 17744  df-idfu 17745  df-cofu 17746
This theorem is referenced by:  catccatid  17992
  Copyright terms: Public domain W3C validator