MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofulid Structured version   Visualization version   GIF version

Theorem cofulid 17828
Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofulid.g (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofulid.1 𝐼 = (idfunc𝐷)
Assertion
Ref Expression
cofulid (𝜑 → (𝐼func 𝐹) = 𝐹)

Proof of Theorem cofulid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofulid.1 . . . . . 6 𝐼 = (idfunc𝐷)
2 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofulid.g . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4 funcrcl 17801 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
65simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
71, 2, 6idfu1st 17817 . . . . 5 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
87coeq1d 5815 . . . 4 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)))
9 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
10 relfunc 17800 . . . . . . 7 Rel (𝐶 Func 𝐷)
11 1st2ndbr 8000 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1210, 3, 11sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
139, 2, 12funcf1 17804 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
14 fcoi2 6717 . . . . 5 ((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
1513, 14syl 17 . . . 4 (𝜑 → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
168, 15eqtrd 2764 . . 3 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (1st𝐹))
1763ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
1913ffvelcdmda 7038 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
20193adant3 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
2113ffvelcdmda 7038 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
22213adant2 1131 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
231, 2, 17, 18, 20, 22idfu2nd 17815 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
2423coeq1d 5815 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)))
25 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
26123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
27 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
28 simp3 1138 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
299, 25, 18, 26, 27, 28funcf2 17806 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
30 fcoi2 6717 . . . . . . 7 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3129, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3224, 31eqtrd 2764 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3332mpoeq3dva 7446 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
349, 12funcfn2 17807 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
35 fnov 7500 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3634, 35sylib 218 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3733, 36eqtr4d 2767 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (2nd𝐹))
3816, 37opeq12d 4841 . 2 (𝜑 → ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
391idfucl 17819 . . . 4 (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷))
406, 39syl 17 . . 3 (𝜑𝐼 ∈ (𝐷 Func 𝐷))
419, 3, 40cofuval 17820 . 2 (𝜑 → (𝐼func 𝐹) = ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
42 1st2nd 7997 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4310, 3, 42sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4438, 41, 433eqtr4d 2774 1 (𝜑 → (𝐼func 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102   I cid 5525   × cxp 5629  cres 5633  ccom 5635  Rel wrel 5636   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17601   Func cfunc 17792  idfunccidfu 17793  func ccofu 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-cid 17606  df-func 17796  df-idfu 17797  df-cofu 17798
This theorem is referenced by:  catccatid  18044  uobeqw  49181
  Copyright terms: Public domain W3C validator