MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofulid Structured version   Visualization version   GIF version

Theorem cofulid 17935
Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofulid.g (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofulid.1 𝐼 = (idfunc𝐷)
Assertion
Ref Expression
cofulid (𝜑 → (𝐼func 𝐹) = 𝐹)

Proof of Theorem cofulid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofulid.1 . . . . . 6 𝐼 = (idfunc𝐷)
2 eqid 2737 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofulid.g . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4 funcrcl 17908 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
65simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
71, 2, 6idfu1st 17924 . . . . 5 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
87coeq1d 5872 . . . 4 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)))
9 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
10 relfunc 17907 . . . . . . 7 Rel (𝐶 Func 𝐷)
11 1st2ndbr 8067 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1210, 3, 11sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
139, 2, 12funcf1 17911 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
14 fcoi2 6783 . . . . 5 ((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
1513, 14syl 17 . . . 4 (𝜑 → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
168, 15eqtrd 2777 . . 3 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (1st𝐹))
1763ad2ant1 1134 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 eqid 2737 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
1913ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
20193adant3 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
2113ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
22213adant2 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
231, 2, 17, 18, 20, 22idfu2nd 17922 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
2423coeq1d 5872 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)))
25 eqid 2737 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
26123ad2ant1 1134 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
27 simp2 1138 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
28 simp3 1139 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
299, 25, 18, 26, 27, 28funcf2 17913 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
30 fcoi2 6783 . . . . . . 7 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3129, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3224, 31eqtrd 2777 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3332mpoeq3dva 7510 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
349, 12funcfn2 17914 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
35 fnov 7564 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3634, 35sylib 218 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3733, 36eqtr4d 2780 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (2nd𝐹))
3816, 37opeq12d 4881 . 2 (𝜑 → ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
391idfucl 17926 . . . 4 (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷))
406, 39syl 17 . . 3 (𝜑𝐼 ∈ (𝐷 Func 𝐷))
419, 3, 40cofuval 17927 . 2 (𝜑 → (𝐼func 𝐹) = ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
42 1st2nd 8064 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4310, 3, 42sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4438, 41, 433eqtr4d 2787 1 (𝜑 → (𝐼func 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143   I cid 5577   × cxp 5683  cres 5687  ccom 5689  Rel wrel 5690   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  Basecbs 17247  Hom chom 17308  Catccat 17707   Func cfunc 17899  idfunccidfu 17900  func ccofu 17901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-ixp 8938  df-cat 17711  df-cid 17712  df-func 17903  df-idfu 17904  df-cofu 17905
This theorem is referenced by:  catccatid  18151
  Copyright terms: Public domain W3C validator