MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofulid Structured version   Visualization version   GIF version

Theorem cofulid 17852
Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofulid.g (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofulid.1 𝐼 = (idfunc𝐷)
Assertion
Ref Expression
cofulid (𝜑 → (𝐼func 𝐹) = 𝐹)

Proof of Theorem cofulid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofulid.1 . . . . . 6 𝐼 = (idfunc𝐷)
2 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofulid.g . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4 funcrcl 17825 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
65simprd 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
71, 2, 6idfu1st 17841 . . . . 5 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
87coeq1d 5825 . . . 4 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)))
9 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
10 relfunc 17824 . . . . . . 7 Rel (𝐶 Func 𝐷)
11 1st2ndbr 8021 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1210, 3, 11sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
139, 2, 12funcf1 17828 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
14 fcoi2 6735 . . . . 5 ((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
1513, 14syl 17 . . . 4 (𝜑 → (( I ↾ (Base‘𝐷)) ∘ (1st𝐹)) = (1st𝐹))
168, 15eqtrd 2764 . . 3 (𝜑 → ((1st𝐼) ∘ (1st𝐹)) = (1st𝐹))
1763ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
1913ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
20193adant3 1132 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
2113ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
22213adant2 1131 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
231, 2, 17, 18, 20, 22idfu2nd 17839 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
2423coeq1d 5825 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)))
25 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
26123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
27 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
28 simp3 1138 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
299, 25, 18, 26, 27, 28funcf2 17830 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
30 fcoi2 6735 . . . . . . 7 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3129, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3224, 31eqtrd 2764 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = (𝑥(2nd𝐹)𝑦))
3332mpoeq3dva 7466 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
349, 12funcfn2 17831 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
35 fnov 7520 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3634, 35sylib 218 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
3733, 36eqtr4d 2767 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (2nd𝐹))
3816, 37opeq12d 4845 . 2 (𝜑 → ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
391idfucl 17843 . . . 4 (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷))
406, 39syl 17 . . 3 (𝜑𝐼 ∈ (𝐷 Func 𝐷))
419, 3, 40cofuval 17844 . 2 (𝜑 → (𝐼func 𝐹) = ⟨((1st𝐼) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐼)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
42 1st2nd 8018 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4310, 3, 42sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4438, 41, 433eqtr4d 2774 1 (𝜑 → (𝐼func 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107   I cid 5532   × cxp 5636  cres 5640  ccom 5642  Rel wrel 5643   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  Catccat 17625   Func cfunc 17816  idfunccidfu 17817  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-idfu 17821  df-cofu 17822
This theorem is referenced by:  catccatid  18068  uobeqw  49208
  Copyright terms: Public domain W3C validator