MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf1st Structured version   Visualization version   GIF version

Theorem prf1st 17446
Description: Cancellation of pairing with first projection. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prf1st.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prf1st.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prf1st.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prf1st (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝑃) = 𝐹)

Proof of Theorem prf1st
Dummy variables 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . . . 7 (𝐷 ×c 𝐸) = (𝐷 ×c 𝐸)
2 eqid 2825 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2825 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
41, 2, 3xpcbas 17420 . . . . . . 7 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘(𝐷 ×c 𝐸))
5 eqid 2825 . . . . . . 7 (Hom ‘(𝐷 ×c 𝐸)) = (Hom ‘(𝐷 ×c 𝐸))
6 prf1st.c . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 17125 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simprd 496 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
109adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
11 prf1st.d . . . . . . . . . 10 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
12 funcrcl 17125 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simprd 496 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
1514adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
16 eqid 2825 . . . . . . 7 (𝐷 1stF 𝐸) = (𝐷 1stF 𝐸)
17 eqid 2825 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
18 relfunc 17124 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
19 1st2ndbr 7735 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 6, 19sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2117, 2, 20funcf1 17128 . . . . . . . . 9 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
23 relfunc 17124 . . . . . . . . . . 11 Rel (𝐶 Func 𝐸)
24 1st2ndbr 7735 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2523, 11, 24sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2617, 3, 25funcf1 17128 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
2726ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
2822, 27opelxpd 5591 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
291, 4, 5, 10, 15, 16, 281stf1 17434 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 1stF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = (1st ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
30 fvex 6679 . . . . . . 7 ((1st𝐹)‘𝑥) ∈ V
31 fvex 6679 . . . . . . 7 ((1st𝐺)‘𝑥) ∈ V
3230, 31op1st 7691 . . . . . 6 (1st ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐹)‘𝑥)
3329, 32syl6eq 2876 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 1stF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐹)‘𝑥))
3433mpteq2dva 5157 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 1stF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)))
35 prf1st.p . . . . . . 7 𝑃 = (𝐹 ⟨,⟩F 𝐺)
36 eqid 2825 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3735, 17, 36, 6, 11prfval 17441 . . . . . 6 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
38 fvex 6679 . . . . . . . 8 (Base‘𝐶) ∈ V
3938mptex 6984 . . . . . . 7 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
4038, 38mpoex 7771 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
4139, 40op1std 7693 . . . . . 6 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
4237, 41syl 17 . . . . 5 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
43 relfunc 17124 . . . . . . . 8 Rel ((𝐷 ×c 𝐸) Func 𝐷)
441, 9, 14, 161stfcl 17439 . . . . . . . 8 (𝜑 → (𝐷 1stF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐷))
45 1st2ndbr 7735 . . . . . . . 8 ((Rel ((𝐷 ×c 𝐸) Func 𝐷) ∧ (𝐷 1stF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐷)) → (1st ‘(𝐷 1stF 𝐸))((𝐷 ×c 𝐸) Func 𝐷)(2nd ‘(𝐷 1stF 𝐸)))
4643, 44, 45sylancr 587 . . . . . . 7 (𝜑 → (1st ‘(𝐷 1stF 𝐸))((𝐷 ×c 𝐸) Func 𝐷)(2nd ‘(𝐷 1stF 𝐸)))
474, 2, 46funcf1 17128 . . . . . 6 (𝜑 → (1st ‘(𝐷 1stF 𝐸)):((Base‘𝐷) × (Base‘𝐸))⟶(Base‘𝐷))
4847feqmptd 6729 . . . . 5 (𝜑 → (1st ‘(𝐷 1stF 𝐸)) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐸)) ↦ ((1st ‘(𝐷 1stF 𝐸))‘𝑢)))
49 fveq2 6666 . . . . 5 (𝑢 = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ → ((1st ‘(𝐷 1stF 𝐸))‘𝑢) = ((1st ‘(𝐷 1stF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
5028, 42, 48, 49fmptco 6886 . . . 4 (𝜑 → ((1st ‘(𝐷 1stF 𝐸)) ∘ (1st𝑃)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 1stF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)))
5121feqmptd 6729 . . . 4 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)))
5234, 50, 513eqtr4d 2870 . . 3 (𝜑 → ((1st ‘(𝐷 1stF 𝐸)) ∘ (1st𝑃)) = (1st𝐹))
539ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
5414ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat)
55 relfunc 17124 . . . . . . . . . . . . . . . 16 Rel (𝐶 Func (𝐷 ×c 𝐸))
5635, 1, 6, 11prfcl 17445 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸)))
57 1st2ndbr 7735 . . . . . . . . . . . . . . . 16 ((Rel (𝐶 Func (𝐷 ×c 𝐸)) ∧ 𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5855, 56, 57sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5917, 4, 58funcf1 17128 . . . . . . . . . . . . . 14 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
6059ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6160adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6261adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6359ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6463adantrl 712 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6564adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
661, 4, 5, 53, 54, 16, 62, 651stf2 17435 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) = (1st ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))))
6766fveq1d 6668 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((1st ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
6858adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
69 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
70 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
7117, 36, 5, 68, 69, 70funcf2 17130 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7271ffvelrnda 6846 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) ∈ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7372fvresd 6686 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
746ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝐷))
7511ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ (𝐶 Func 𝐸))
7669adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
7770adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
78 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7935, 17, 36, 74, 75, 76, 77, 78prf2 17444 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
8079fveq2d 6670 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (1st ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
81 fvex 6679 . . . . . . . . . . 11 ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ V
82 fvex 6679 . . . . . . . . . . 11 ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ V
8381, 82op1st 7691 . . . . . . . . . 10 (1st ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ((𝑥(2nd𝐹)𝑦)‘𝑓)
8480, 83syl6eq 2876 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
8567, 73, 843eqtrd 2864 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
8685mpteq2dva 5157 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)))
87 eqid 2825 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
8846adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐷 1stF 𝐸))((𝐷 ×c 𝐸) Func 𝐷)(2nd ‘(𝐷 1stF 𝐸)))
894, 5, 87, 88, 61, 64funcf2 17130 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 1stF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐷)((1st ‘(𝐷 1stF 𝐸))‘((1st𝑃)‘𝑦))))
90 fcompt 6890 . . . . . . . 8 (((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 1stF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐷)((1st ‘(𝐷 1stF 𝐸))‘((1st𝑃)‘𝑦))) ∧ (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9189, 71, 90syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9220adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9317, 36, 87, 92, 69, 70funcf2 17130 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
9493feqmptd 6729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)))
9586, 91, 943eqtr4d 2870 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐹)𝑦))
96953impb 1109 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐹)𝑦))
9796mpoeq3dva 7226 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
9817, 20funcfn2 17131 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
99 fnov 7275 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
10098, 99sylib 219 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
10197, 100eqtr4d 2863 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (2nd𝐹))
10252, 101opeq12d 4809 . 2 (𝜑 → ⟨((1st ‘(𝐷 1stF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
10317, 56, 44cofuval 17144 . 2 (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝑃) = ⟨((1st ‘(𝐷 1stF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩)
104 1st2nd 7732 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
10518, 6, 104sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
106102, 103, 1053eqtr4d 2870 1 (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝑃) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  cop 4569   class class class wbr 5062  cmpt 5142   × cxp 5551  cres 5555  ccom 5557  Rel wrel 5558   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  cmpo 7153  1st c1st 7681  2nd c2nd 7682  Basecbs 16475  Hom chom 16568  Catccat 16927   Func cfunc 17116  func ccofu 17118   ×c cxpc 17410   1stF c1stf 17411   ⟨,⟩F cprf 17413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-func 17120  df-cofu 17122  df-xpc 17414  df-1stf 17415  df-prf 17417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator