MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndprf Structured version   Visualization version   GIF version

Theorem 1st2ndprf 18054
Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
1st2ndprf.t 𝑇 = (𝐷 ×c 𝐸)
1st2ndprf.f (𝜑𝐹 ∈ (𝐶 Func 𝑇))
1st2ndprf.d (𝜑𝐷 ∈ Cat)
1st2ndprf.e (𝜑𝐸 ∈ Cat)
Assertion
Ref Expression
1st2ndprf (𝜑𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)))

Proof of Theorem 1st2ndprf
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 1st2ndprf.t . . . . . . 7 𝑇 = (𝐷 ×c 𝐸)
3 eqid 2737 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2737 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
52, 3, 4xpcbas 18026 . . . . . 6 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘𝑇)
6 relfunc 17708 . . . . . . 7 Rel (𝐶 Func 𝑇)
7 1st2ndprf.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝑇))
8 1st2ndbr 7966 . . . . . . 7 ((Rel (𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
96, 7, 8sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
101, 5, 9funcf1 17712 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
1110feqmptd 6907 . . . 4 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)))
1210ffvelcdmda 7031 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
13 1st2nd2 7952 . . . . . . 7 (((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)) → ((1st𝐹)‘𝑥) = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
1412, 13syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
157adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝑇))
16 1st2ndprf.d . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
17 1st2ndprf.e . . . . . . . . . . 11 (𝜑𝐸 ∈ Cat)
18 eqid 2737 . . . . . . . . . . 11 (𝐷 1stF 𝐸) = (𝐷 1stF 𝐸)
192, 16, 17, 181stfcl 18045 . . . . . . . . . 10 (𝜑 → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
2019adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
21 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
221, 15, 20, 21cofu1 17730 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷 1stF 𝐸))‘((1st𝐹)‘𝑥)))
23 eqid 2737 . . . . . . . . 9 (Hom ‘𝑇) = (Hom ‘𝑇)
2416adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2517adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
262, 5, 23, 24, 25, 18, 121stf1 18040 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 1stF 𝐸))‘((1st𝐹)‘𝑥)) = (1st ‘((1st𝐹)‘𝑥)))
2722, 26eqtrd 2777 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥) = (1st ‘((1st𝐹)‘𝑥)))
28 eqid 2737 . . . . . . . . . . 11 (𝐷 2ndF 𝐸) = (𝐷 2ndF 𝐸)
292, 16, 17, 282ndfcl 18046 . . . . . . . . . 10 (𝜑 → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
3029adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
311, 15, 30, 21cofu1 17730 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷 2ndF 𝐸))‘((1st𝐹)‘𝑥)))
322, 5, 23, 24, 25, 28, 122ndf1 18043 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘((1st𝐹)‘𝑥)) = (2nd ‘((1st𝐹)‘𝑥)))
3331, 32eqtrd 2777 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥) = (2nd ‘((1st𝐹)‘𝑥)))
3427, 33opeq12d 4836 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩ = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
3514, 34eqtr4d 2780 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩)
3635mpteq2dva 5203 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩))
3711, 36eqtrd 2777 . . 3 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩))
381, 9funcfn2 17715 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
39 fnov 7481 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
4038, 39sylib 217 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
41 eqid 2737 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
429adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
43 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
44 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
451, 41, 23, 42, 43, 44funcf2 17714 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))
4645feqmptd 6907 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)))
472, 23relxpchom 18029 . . . . . . . . . 10 Rel (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))
4845ffvelcdmda 7031 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))
49 1st2nd 7963 . . . . . . . . . 10 ((Rel (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)) ∧ ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
5047, 48, 49sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
517ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝑇))
5219ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
5343adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
5444adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
55 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
561, 51, 52, 53, 54, 41, 55cofu2 17732 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
5716adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5817adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐸 ∈ Cat)
5912adantrr 715 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6010ffvelcdmda 7031 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6160adantrl 714 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
622, 5, 23, 57, 58, 18, 59, 611stf2 18041 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦)) = (1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
6362adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦)) = (1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
6463fveq1d 6841 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6548fvresd 6859 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6656, 64, 653eqtrd 2781 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6729ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
681, 51, 67, 53, 54, 41, 55cofu2 17732 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
692, 5, 23, 57, 58, 28, 59, 612ndf2 18044 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦)) = (2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
7069adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦)) = (2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
7170fveq1d 6841 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7248fvresd 6859 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7368, 71, 723eqtrd 2781 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7466, 73opeq12d 4836 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩ = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
7550, 74eqtr4d 2780 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)
7675mpteq2dva 5203 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
7746, 76eqtrd 2777 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
78773impb 1115 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
7978mpoeq3dva 7428 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)))
8040, 79eqtrd 2777 . . 3 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)))
8137, 80opeq12d 4836 . 2 (𝜑 → ⟨(1st𝐹), (2nd𝐹)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))⟩)
82 1st2nd 7963 . . 3 ((Rel (𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
836, 7, 82sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
84 eqid 2737 . . 3 (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)) = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹))
857, 19cofucl 17734 . . 3 (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝐹) ∈ (𝐶 Func 𝐷))
867, 29cofucl 17734 . . 3 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝐹) ∈ (𝐶 Func 𝐸))
8784, 1, 41, 85, 86prfval 18047 . 2 (𝜑 → (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)) = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))⟩)
8881, 83, 873eqtr4d 2787 1 (𝜑𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4590   class class class wbr 5103  cmpt 5186   × cxp 5629  cres 5633  Rel wrel 5636   Fn wfn 6488  cfv 6493  (class class class)co 7351  cmpo 7353  1st c1st 7911  2nd c2nd 7912  Basecbs 17043  Hom chom 17104  Catccat 17504   Func cfunc 17700  func ccofu 17702   ×c cxpc 18016   1stF c1stf 18017   2ndF c2ndf 18018   ⟨,⟩F cprf 18019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-map 8725  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-z 12458  df-dec 12577  df-uz 12722  df-fz 13379  df-struct 16979  df-slot 17014  df-ndx 17026  df-base 17044  df-hom 17117  df-cco 17118  df-cat 17508  df-cid 17509  df-func 17704  df-cofu 17706  df-xpc 18020  df-1stf 18021  df-2ndf 18022  df-prf 18023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator