MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndprf Structured version   Visualization version   GIF version

Theorem 1st2ndprf 18223
Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
1st2ndprf.t 𝑇 = (𝐷 ×c 𝐸)
1st2ndprf.f (𝜑𝐹 ∈ (𝐶 Func 𝑇))
1st2ndprf.d (𝜑𝐷 ∈ Cat)
1st2ndprf.e (𝜑𝐸 ∈ Cat)
Assertion
Ref Expression
1st2ndprf (𝜑𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)))

Proof of Theorem 1st2ndprf
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 1st2ndprf.t . . . . . . 7 𝑇 = (𝐷 ×c 𝐸)
3 eqid 2736 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2736 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
52, 3, 4xpcbas 18195 . . . . . 6 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘𝑇)
6 relfunc 17880 . . . . . . 7 Rel (𝐶 Func 𝑇)
7 1st2ndprf.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝑇))
8 1st2ndbr 8046 . . . . . . 7 ((Rel (𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
96, 7, 8sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
101, 5, 9funcf1 17884 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
1110feqmptd 6952 . . . 4 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)))
1210ffvelcdmda 7079 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
13 1st2nd2 8032 . . . . . . 7 (((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)) → ((1st𝐹)‘𝑥) = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
1412, 13syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
157adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝑇))
16 1st2ndprf.d . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
17 1st2ndprf.e . . . . . . . . . . 11 (𝜑𝐸 ∈ Cat)
18 eqid 2736 . . . . . . . . . . 11 (𝐷 1stF 𝐸) = (𝐷 1stF 𝐸)
192, 16, 17, 181stfcl 18214 . . . . . . . . . 10 (𝜑 → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
2019adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
21 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
221, 15, 20, 21cofu1 17902 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷 1stF 𝐸))‘((1st𝐹)‘𝑥)))
23 eqid 2736 . . . . . . . . 9 (Hom ‘𝑇) = (Hom ‘𝑇)
2416adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2517adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
262, 5, 23, 24, 25, 18, 121stf1 18209 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 1stF 𝐸))‘((1st𝐹)‘𝑥)) = (1st ‘((1st𝐹)‘𝑥)))
2722, 26eqtrd 2771 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥) = (1st ‘((1st𝐹)‘𝑥)))
28 eqid 2736 . . . . . . . . . . 11 (𝐷 2ndF 𝐸) = (𝐷 2ndF 𝐸)
292, 16, 17, 282ndfcl 18215 . . . . . . . . . 10 (𝜑 → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
3029adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
311, 15, 30, 21cofu1 17902 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷 2ndF 𝐸))‘((1st𝐹)‘𝑥)))
322, 5, 23, 24, 25, 28, 122ndf1 18212 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘((1st𝐹)‘𝑥)) = (2nd ‘((1st𝐹)‘𝑥)))
3331, 32eqtrd 2771 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥) = (2nd ‘((1st𝐹)‘𝑥)))
3427, 33opeq12d 4862 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩ = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
3514, 34eqtr4d 2774 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩)
3635mpteq2dva 5219 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩))
3711, 36eqtrd 2771 . . 3 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩))
381, 9funcfn2 17887 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
39 fnov 7543 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
4038, 39sylib 218 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
41 eqid 2736 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
429adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
43 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
44 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
451, 41, 23, 42, 43, 44funcf2 17886 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))
4645feqmptd 6952 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)))
472, 23relxpchom 18198 . . . . . . . . . 10 Rel (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))
4845ffvelcdmda 7079 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))
49 1st2nd 8043 . . . . . . . . . 10 ((Rel (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)) ∧ ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
5047, 48, 49sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
517ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝑇))
5219ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
5343adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
5444adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
55 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
561, 51, 52, 53, 54, 41, 55cofu2 17904 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
5716adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5817adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐸 ∈ Cat)
5912adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6010ffvelcdmda 7079 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6160adantrl 716 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
622, 5, 23, 57, 58, 18, 59, 611stf2 18210 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦)) = (1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
6362adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦)) = (1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
6463fveq1d 6883 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6548fvresd 6901 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6656, 64, 653eqtrd 2775 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6729ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
681, 51, 67, 53, 54, 41, 55cofu2 17904 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
692, 5, 23, 57, 58, 28, 59, 612ndf2 18213 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦)) = (2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
7069adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦)) = (2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
7170fveq1d 6883 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7248fvresd 6901 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7368, 71, 723eqtrd 2775 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7466, 73opeq12d 4862 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩ = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
7550, 74eqtr4d 2774 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)
7675mpteq2dva 5219 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
7746, 76eqtrd 2771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
78773impb 1114 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
7978mpoeq3dva 7489 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)))
8040, 79eqtrd 2771 . . 3 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)))
8137, 80opeq12d 4862 . 2 (𝜑 → ⟨(1st𝐹), (2nd𝐹)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))⟩)
82 1st2nd 8043 . . 3 ((Rel (𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
836, 7, 82sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
84 eqid 2736 . . 3 (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)) = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹))
857, 19cofucl 17906 . . 3 (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝐹) ∈ (𝐶 Func 𝐷))
867, 29cofucl 17906 . . 3 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝐹) ∈ (𝐶 Func 𝐸))
8784, 1, 41, 85, 86prfval 18216 . 2 (𝜑 → (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)) = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))⟩)
8881, 83, 873eqtr4d 2781 1 (𝜑𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124  cmpt 5206   × cxp 5657  cres 5661  Rel wrel 5664   Fn wfn 6531  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Catccat 17681   Func cfunc 17872  func ccofu 17874   ×c cxpc 18185   1stF c1stf 18186   2ndF c2ndf 18187   ⟨,⟩F cprf 18188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-func 17876  df-cofu 17878  df-xpc 18189  df-1stf 18190  df-2ndf 18191  df-prf 18192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator