![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexxg | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg | ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7574 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx 8107 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
4 | vsnex 5449 | . . . . . 6 ⊢ {𝑥} ∈ V | |
5 | xpexg 7785 | . . . . . 6 ⊢ (({𝑥} ∈ V ∧ 𝐵 ∈ 𝑆) → ({𝑥} × 𝐵) ∈ V) | |
6 | 4, 5 | mpan 689 | . . . . 5 ⊢ (𝐵 ∈ 𝑆 → ({𝑥} × 𝐵) ∈ V) |
7 | 6 | ralimi 3089 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
8 | iunexg 8004 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) | |
9 | 7, 8 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
10 | ssexg 5341 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V) | |
11 | 3, 9, 10 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → dom 𝐹 ∈ V) |
12 | funex 7256 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
13 | 2, 11, 12 | sylancr 586 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 {csn 4648 ∪ ciun 5015 × cxp 5698 dom cdm 5700 Fun wfun 6567 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: mpoexg 8117 mpoex 8120 gsum2d2lem 20015 taylfval 26418 ptrest 37579 |
Copyright terms: Public domain | W3C validator |