Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoexxg | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg | ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7436 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx 7949 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
4 | snex 5367 | . . . . . 6 ⊢ {𝑥} ∈ V | |
5 | xpexg 7638 | . . . . . 6 ⊢ (({𝑥} ∈ V ∧ 𝐵 ∈ 𝑆) → ({𝑥} × 𝐵) ∈ V) | |
6 | 4, 5 | mpan 687 | . . . . 5 ⊢ (𝐵 ∈ 𝑆 → ({𝑥} × 𝐵) ∈ V) |
7 | 6 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
8 | iunexg 7849 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) | |
9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
10 | ssexg 5260 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V) | |
11 | 3, 9, 10 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → dom 𝐹 ∈ V) |
12 | funex 7132 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
13 | 2, 11, 12 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 Vcvv 3441 ⊆ wss 3896 {csn 4569 ∪ ciun 4935 × cxp 5603 dom cdm 5605 Fun wfun 6457 ∈ cmpo 7315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-oprab 7317 df-mpo 7318 df-1st 7874 df-2nd 7875 |
This theorem is referenced by: mpoexg 7960 mpoex 7963 gsum2d2lem 19641 taylfval 25589 ptrest 35836 |
Copyright terms: Public domain | W3C validator |