Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoexxg | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg | ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7430 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx 7938 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
4 | snex 5363 | . . . . . 6 ⊢ {𝑥} ∈ V | |
5 | xpexg 7632 | . . . . . 6 ⊢ (({𝑥} ∈ V ∧ 𝐵 ∈ 𝑆) → ({𝑥} × 𝐵) ∈ V) | |
6 | 4, 5 | mpan 688 | . . . . 5 ⊢ (𝐵 ∈ 𝑆 → ({𝑥} × 𝐵) ∈ V) |
7 | 6 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
8 | iunexg 7838 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) | |
9 | 7, 8 | sylan2 594 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
10 | ssexg 5256 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V) | |
11 | 3, 9, 10 | sylancr 588 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → dom 𝐹 ∈ V) |
12 | funex 7127 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
13 | 2, 11, 12 | sylancr 588 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ⊆ wss 3892 {csn 4565 ∪ ciun 4931 × cxp 5598 dom cdm 5600 Fun wfun 6452 ∈ cmpo 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 |
This theorem is referenced by: mpoexg 7949 mpoex 7952 gsum2d2lem 19619 taylfval 25563 ptrest 35820 |
Copyright terms: Public domain | W3C validator |