MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexxg Structured version   Visualization version   GIF version

Theorem mpoexxg 8062
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexxg ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7532 . 2 Fun 𝐹
31dmmpossx 8052 . . 3 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
4 vsnex 5430 . . . . . 6 {𝑥} ∈ V
5 xpexg 7737 . . . . . 6 (({𝑥} ∈ V ∧ 𝐵𝑆) → ({𝑥} × 𝐵) ∈ V)
64, 5mpan 689 . . . . 5 (𝐵𝑆 → ({𝑥} × 𝐵) ∈ V)
76ralimi 3084 . . . 4 (∀𝑥𝐴 𝐵𝑆 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
8 iunexg 7950 . . . 4 ((𝐴𝑅 ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
97, 8sylan2 594 . . 3 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
10 ssexg 5324 . . 3 ((dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V)
113, 9, 10sylancr 588 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → dom 𝐹 ∈ V)
12 funex 7221 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
132, 11, 12sylancr 588 1 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3949  {csn 4629   ciun 4998   × cxp 5675  dom cdm 5677  Fun wfun 6538  cmpo 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976
This theorem is referenced by:  mpoexg  8063  mpoex  8066  gsum2d2lem  19841  taylfval  25871  ptrest  36487
  Copyright terms: Public domain W3C validator