MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexxg Structured version   Visualization version   GIF version

Theorem mpoexxg 8116
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexxg ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7574 . 2 Fun 𝐹
31dmmpossx 8107 . . 3 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
4 vsnex 5449 . . . . . 6 {𝑥} ∈ V
5 xpexg 7785 . . . . . 6 (({𝑥} ∈ V ∧ 𝐵𝑆) → ({𝑥} × 𝐵) ∈ V)
64, 5mpan 689 . . . . 5 (𝐵𝑆 → ({𝑥} × 𝐵) ∈ V)
76ralimi 3089 . . . 4 (∀𝑥𝐴 𝐵𝑆 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
8 iunexg 8004 . . . 4 ((𝐴𝑅 ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
97, 8sylan2 592 . . 3 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
10 ssexg 5341 . . 3 ((dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V)
113, 9, 10sylancr 586 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → dom 𝐹 ∈ V)
12 funex 7256 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
132, 11, 12sylancr 586 1 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  {csn 4648   ciun 5015   × cxp 5698  dom cdm 5700  Fun wfun 6567  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  mpoexg  8117  mpoex  8120  gsum2d2lem  20015  taylfval  26418  ptrest  37579
  Copyright terms: Public domain W3C validator