Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl Structured version   Visualization version   GIF version

Theorem hoiprodcl 45249
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoiprodcl.1 𝑘𝜑
hoiprodcl.2 (𝜑𝑋 ∈ Fin)
hoiprodcl.3 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoiprodcl (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoiprodcl
StepHypRef Expression
1 0xr 11257 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 11264 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 hoiprodcl.1 . . . 4 𝑘𝜑
6 hoiprodcl.2 . . . 4 (𝜑𝑋 ∈ Fin)
7 hoiprodcl.3 . . . . . . . . 9 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
87adantr 481 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
9 simpr 485 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
108, 9fvovco 43877 . . . . . . 7 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
1110fveq2d 6892 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))))
127ffvelcdmda 7083 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
13 xp1st 8003 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
1412, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
15 xp2nd 8004 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
17 volico 44685 . . . . . . 7 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1814, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1911, 18eqtrd 2772 . . . . 5 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
2016, 14resubcld 11638 . . . . . 6 ((𝜑𝑘𝑋) → ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))) ∈ ℝ)
21 0red 11213 . . . . . 6 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
2220, 21ifcld 4573 . . . . 5 ((𝜑𝑘𝑋) → if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0) ∈ ℝ)
2319, 22eqeltrd 2833 . . . 4 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
245, 6, 23fprodreclf 15899 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
2524rexrd 11260 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*)
2616rexrd 11260 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
27 icombl 25072 . . . . . 6 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2814, 26, 27syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2910, 28eqeltrd 2833 . . . 4 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol)
30 volge0 44663 . . . 4 ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
3129, 30syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
325, 6, 23, 31fprodge0 15933 . 2 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
3324ltpnfd 13097 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞)
342, 4, 25, 32, 33elicod 13370 1 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  ifcif 4527   class class class wbr 5147   × cxp 5673  dom cdm 5675  ccom 5679  wf 6536  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Fincfn 8935  cr 11105  0cc0 11106  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  cmin 11440  [,)cico 13322  cprod 15845  volcvol 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-prod 15846  df-rest 17364  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cmp 22882  df-ovol 24972  df-vol 24973
This theorem is referenced by:  ovnprodcl  45256  hoiprodcl2  45257  ovnhoilem1  45303
  Copyright terms: Public domain W3C validator