Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoiprodcl | Structured version Visualization version GIF version |
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoiprodcl.1 | ⊢ Ⅎ𝑘𝜑 |
hoiprodcl.2 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoiprodcl.3 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoiprodcl | ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11023 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
3 | pnfxr 11030 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | hoiprodcl.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
6 | hoiprodcl.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | hoiprodcl.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
8 | 7 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
9 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
10 | 8, 9 | fvovco 42702 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
11 | 10 | fveq2d 6775 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))))) |
12 | 7 | ffvelrnda 6958 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
13 | xp1st 7856 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
15 | xp2nd 7857 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
16 | 12, 15 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
17 | volico 43495 | . . . . . . 7 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) | |
18 | 14, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) |
19 | 11, 18 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) |
20 | 16, 14 | resubcld 11403 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))) ∈ ℝ) |
21 | 0red 10979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
22 | 20, 21 | ifcld 4511 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0) ∈ ℝ) |
23 | 19, 22 | eqeltrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ) |
24 | 5, 6, 23 | fprodreclf 15667 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ) |
25 | 24 | rexrd 11026 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*) |
26 | 16 | rexrd 11026 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) |
27 | icombl 24726 | . . . . . 6 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ∈ dom vol) | |
28 | 14, 26, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ∈ dom vol) |
29 | 10, 28 | eqeltrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol) |
30 | volge0 43473 | . . . 4 ⊢ ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘))) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘))) |
32 | 5, 6, 23, 31 | fprodge0 15701 | . 2 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘))) |
33 | 24 | ltpnfd 12856 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞) |
34 | 2, 4, 25, 32, 33 | elicod 13128 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2110 ifcif 4465 class class class wbr 5079 × cxp 5588 dom cdm 5590 ∘ ccom 5594 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 1st c1st 7822 2nd c2nd 7823 Fincfn 8716 ℝcr 10871 0cc0 10872 +∞cpnf 11007 ℝ*cxr 11009 < clt 11010 ≤ cle 11011 − cmin 11205 [,)cico 13080 ∏cprod 15613 volcvol 24625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-dju 9660 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 df-sum 15396 df-prod 15614 df-rest 17131 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-top 22041 df-topon 22058 df-bases 22094 df-cmp 22536 df-ovol 24626 df-vol 24627 |
This theorem is referenced by: ovnprodcl 44063 hoiprodcl2 44064 ovnhoilem1 44110 |
Copyright terms: Public domain | W3C validator |