Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl Structured version   Visualization version   GIF version

Theorem hoiprodcl 46538
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoiprodcl.1 𝑘𝜑
hoiprodcl.2 (𝜑𝑋 ∈ Fin)
hoiprodcl.3 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoiprodcl (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoiprodcl
StepHypRef Expression
1 0xr 11197 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 11204 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 hoiprodcl.1 . . . 4 𝑘𝜑
6 hoiprodcl.2 . . . 4 (𝜑𝑋 ∈ Fin)
7 hoiprodcl.3 . . . . . . . . 9 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
87adantr 480 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
9 simpr 484 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
108, 9fvovco 45180 . . . . . . 7 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
1110fveq2d 6844 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))))
127ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
13 xp1st 7979 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
1412, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
15 xp2nd 7980 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
17 volico 45974 . . . . . . 7 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1814, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1911, 18eqtrd 2764 . . . . 5 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
2016, 14resubcld 11582 . . . . . 6 ((𝜑𝑘𝑋) → ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))) ∈ ℝ)
21 0red 11153 . . . . . 6 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
2220, 21ifcld 4531 . . . . 5 ((𝜑𝑘𝑋) → if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0) ∈ ℝ)
2319, 22eqeltrd 2828 . . . 4 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
245, 6, 23fprodreclf 15901 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
2524rexrd 11200 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*)
2616rexrd 11200 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
27 icombl 25498 . . . . . 6 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2814, 26, 27syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2910, 28eqeltrd 2828 . . . 4 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol)
30 volge0 45952 . . . 4 ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
3129, 30syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
325, 6, 23, 31fprodge0 15935 . 2 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
3324ltpnfd 13057 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞)
342, 4, 25, 32, 33elicod 13332 1 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  ifcif 4484   class class class wbr 5102   × cxp 5629  dom cdm 5631  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Fincfn 8895  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381  [,)cico 13284  cprod 15845  volcvol 25397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398  df-vol 25399
This theorem is referenced by:  ovnprodcl  46545  hoiprodcl2  46546  ovnhoilem1  46592
  Copyright terms: Public domain W3C validator