Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl Structured version   Visualization version   GIF version

Theorem hoiprodcl 44862
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoiprodcl.1 𝑘𝜑
hoiprodcl.2 (𝜑𝑋 ∈ Fin)
hoiprodcl.3 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoiprodcl (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoiprodcl
StepHypRef Expression
1 0xr 11209 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 11216 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 hoiprodcl.1 . . . 4 𝑘𝜑
6 hoiprodcl.2 . . . 4 (𝜑𝑋 ∈ Fin)
7 hoiprodcl.3 . . . . . . . . 9 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
87adantr 482 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
9 simpr 486 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
108, 9fvovco 43487 . . . . . . 7 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
1110fveq2d 6851 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))))
127ffvelcdmda 7040 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
13 xp1st 7958 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
1412, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
15 xp2nd 7959 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
17 volico 44298 . . . . . . 7 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1814, 16, 17syl2anc 585 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1911, 18eqtrd 2777 . . . . 5 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
2016, 14resubcld 11590 . . . . . 6 ((𝜑𝑘𝑋) → ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))) ∈ ℝ)
21 0red 11165 . . . . . 6 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
2220, 21ifcld 4537 . . . . 5 ((𝜑𝑘𝑋) → if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0) ∈ ℝ)
2319, 22eqeltrd 2838 . . . 4 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
245, 6, 23fprodreclf 15849 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
2524rexrd 11212 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*)
2616rexrd 11212 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
27 icombl 24944 . . . . . 6 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2814, 26, 27syl2anc 585 . . . . 5 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2910, 28eqeltrd 2838 . . . 4 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol)
30 volge0 44276 . . . 4 ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
3129, 30syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
325, 6, 23, 31fprodge0 15883 . 2 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
3324ltpnfd 13049 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞)
342, 4, 25, 32, 33elicod 13321 1 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  ifcif 4491   class class class wbr 5110   × cxp 5636  dom cdm 5638  ccom 5642  wf 6497  cfv 6501  (class class class)co 7362  1st c1st 7924  2nd c2nd 7925  Fincfn 8890  cr 11057  0cc0 11058  +∞cpnf 11193  *cxr 11195   < clt 11196  cle 11197  cmin 11392  [,)cico 13273  cprod 15795  volcvol 24843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578  df-prod 15796  df-rest 17311  df-topgen 17332  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-top 22259  df-topon 22276  df-bases 22312  df-cmp 22754  df-ovol 24844  df-vol 24845
This theorem is referenced by:  ovnprodcl  44869  hoiprodcl2  44870  ovnhoilem1  44916
  Copyright terms: Public domain W3C validator