Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl Structured version   Visualization version   GIF version

Theorem hoiprodcl 46644
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoiprodcl.1 𝑘𝜑
hoiprodcl.2 (𝜑𝑋 ∈ Fin)
hoiprodcl.3 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoiprodcl (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoiprodcl
StepHypRef Expression
1 0xr 11159 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 11166 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 hoiprodcl.1 . . . 4 𝑘𝜑
6 hoiprodcl.2 . . . 4 (𝜑𝑋 ∈ Fin)
7 hoiprodcl.3 . . . . . . . . 9 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
87adantr 480 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
9 simpr 484 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
108, 9fvovco 45289 . . . . . . 7 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
1110fveq2d 6826 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))))
127ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
13 xp1st 7953 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
1412, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
15 xp2nd 7954 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
17 volico 46080 . . . . . . 7 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1814, 16, 17syl2anc 584 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘)))) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
1911, 18eqtrd 2766 . . . . 5 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0))
2016, 14resubcld 11545 . . . . . 6 ((𝜑𝑘𝑋) → ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))) ∈ ℝ)
21 0red 11115 . . . . . 6 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
2220, 21ifcld 4519 . . . . 5 ((𝜑𝑘𝑋) → if((1st ‘(𝐼𝑘)) < (2nd ‘(𝐼𝑘)), ((2nd ‘(𝐼𝑘)) − (1st ‘(𝐼𝑘))), 0) ∈ ℝ)
2319, 22eqeltrd 2831 . . . 4 ((𝜑𝑘𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
245, 6, 23fprodreclf 15866 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ)
2524rexrd 11162 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*)
2616rexrd 11162 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
27 icombl 25492 . . . . . 6 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2814, 26, 27syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ∈ dom vol)
2910, 28eqeltrd 2831 . . . 4 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol)
30 volge0 46058 . . . 4 ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
3129, 30syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘)))
325, 6, 23, 31fprodge0 15900 . 2 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
3324ltpnfd 13020 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞)
342, 4, 25, 32, 33elicod 13295 1 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  ifcif 4472   class class class wbr 5089   × cxp 5612  dom cdm 5614  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Fincfn 8869  cr 11005  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cmin 11344  [,)cico 13247  cprod 15810  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393
This theorem is referenced by:  ovnprodcl  46651  hoiprodcl2  46652  ovnhoilem1  46698
  Copyright terms: Public domain W3C validator