Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoiprodcl | Structured version Visualization version GIF version |
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoiprodcl.1 | ⊢ Ⅎ𝑘𝜑 |
hoiprodcl.2 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoiprodcl.3 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoiprodcl | ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10953 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
3 | pnfxr 10960 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | hoiprodcl.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
6 | hoiprodcl.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | hoiprodcl.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
9 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
10 | 8, 9 | fvovco 42621 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
11 | 10 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))))) |
12 | 7 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
13 | xp1st 7836 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
15 | xp2nd 7837 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
16 | 12, 15 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
17 | volico 43414 | . . . . . . 7 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) | |
18 | 14, 16, 17 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) |
19 | 11, 18 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) |
20 | 16, 14 | resubcld 11333 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))) ∈ ℝ) |
21 | 0red 10909 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
22 | 20, 21 | ifcld 4502 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0) ∈ ℝ) |
23 | 19, 22 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ) |
24 | 5, 6, 23 | fprodreclf 15597 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ) |
25 | 24 | rexrd 10956 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*) |
26 | 16 | rexrd 10956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) |
27 | icombl 24633 | . . . . . 6 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ∈ dom vol) | |
28 | 14, 26, 27 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ∈ dom vol) |
29 | 10, 28 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol) |
30 | volge0 43392 | . . . 4 ⊢ ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘))) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘))) |
32 | 5, 6, 23, 31 | fprodge0 15631 | . 2 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘))) |
33 | 24 | ltpnfd 12786 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞) |
34 | 2, 4, 25, 32, 33 | elicod 13058 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 × cxp 5578 dom cdm 5580 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Fincfn 8691 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 [,)cico 13010 ∏cprod 15543 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-ovol 24533 df-vol 24534 |
This theorem is referenced by: ovnprodcl 43982 hoiprodcl2 43983 ovnhoilem1 44029 |
Copyright terms: Public domain | W3C validator |