![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoiprodcl | Structured version Visualization version GIF version |
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoiprodcl.1 | ⊢ Ⅎ𝑘𝜑 |
hoiprodcl.2 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoiprodcl.3 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoiprodcl | ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11209 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
3 | pnfxr 11216 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | hoiprodcl.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
6 | hoiprodcl.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | hoiprodcl.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
8 | 7 | adantr 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
9 | simpr 486 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
10 | 8, 9 | fvovco 43487 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
11 | 10 | fveq2d 6851 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))))) |
12 | 7 | ffvelcdmda 7040 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
13 | xp1st 7958 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
15 | xp2nd 7959 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
16 | 12, 15 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
17 | volico 44298 | . . . . . . 7 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) | |
18 | 14, 16, 17 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) |
19 | 11, 18 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) = if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0)) |
20 | 16, 14 | resubcld 11590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))) ∈ ℝ) |
21 | 0red 11165 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
22 | 20, 21 | ifcld 4537 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if((1st ‘(𝐼‘𝑘)) < (2nd ‘(𝐼‘𝑘)), ((2nd ‘(𝐼‘𝑘)) − (1st ‘(𝐼‘𝑘))), 0) ∈ ℝ) |
23 | 19, 22 | eqeltrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ) |
24 | 5, 6, 23 | fprodreclf 15849 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ) |
25 | 24 | rexrd 11212 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ ℝ*) |
26 | 16 | rexrd 11212 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) |
27 | icombl 24944 | . . . . . 6 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ∈ dom vol) | |
28 | 14, 26, 27 | syl2anc 585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ∈ dom vol) |
29 | 10, 28 | eqeltrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ∈ dom vol) |
30 | volge0 44276 | . . . 4 ⊢ ((([,) ∘ 𝐼)‘𝑘) ∈ dom vol → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘))) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘(([,) ∘ 𝐼)‘𝑘))) |
32 | 5, 6, 23, 31 | fprodge0 15883 | . 2 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘))) |
33 | 24 | ltpnfd 13049 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) < +∞) |
34 | 2, 4, 25, 32, 33 | elicod 13321 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ifcif 4491 class class class wbr 5110 × cxp 5636 dom cdm 5638 ∘ ccom 5642 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 1st c1st 7924 2nd c2nd 7925 Fincfn 8890 ℝcr 11057 0cc0 11058 +∞cpnf 11193 ℝ*cxr 11195 < clt 11196 ≤ cle 11197 − cmin 11392 [,)cico 13273 ∏cprod 15795 volcvol 24843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-map 8774 df-pm 8775 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fi 9354 df-sup 9385 df-inf 9386 df-oi 9453 df-dju 9844 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-n0 12421 df-z 12507 df-uz 12771 df-q 12881 df-rp 12923 df-xneg 13040 df-xadd 13041 df-xmul 13042 df-ioo 13275 df-ico 13277 df-icc 13278 df-fz 13432 df-fzo 13575 df-fl 13704 df-seq 13914 df-exp 13975 df-hash 14238 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-clim 15377 df-rlim 15378 df-sum 15578 df-prod 15796 df-rest 17311 df-topgen 17332 df-psmet 20804 df-xmet 20805 df-met 20806 df-bl 20807 df-mopn 20808 df-top 22259 df-topon 22276 df-bases 22312 df-cmp 22754 df-ovol 24844 df-vol 24845 |
This theorem is referenced by: ovnprodcl 44869 hoiprodcl2 44870 ovnhoilem1 44916 |
Copyright terms: Public domain | W3C validator |