Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissre Structured version   Visualization version   GIF version

Theorem hoissre 46652
Description: The projection of a half-open interval onto a single dimension is a subset of . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
hoissre.1 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoissre ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoissre
StepHypRef Expression
1 hoissre.1 . . . 4 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 480 . . 3 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 484 . . 3 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 45300 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelcdmda 7017 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 7953 . . . 4 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . 3 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
8 xp2nd 7954 . . . . 5 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
95, 8syl 17 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
109rexrd 11162 . . 3 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
11 icossre 13328 . . 3 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ⊆ ℝ)
127, 10, 11syl2anc 584 . 2 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ⊆ ℝ)
134, 12eqsstrd 3964 1 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  cr 11005  *cxr 11145  [,)cico 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251
This theorem is referenced by:  hoissrrn  46657
  Copyright terms: Public domain W3C validator