Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissre Structured version   Visualization version   GIF version

Theorem hoissre 45246
Description: The projection of a half-open interval onto a single dimension is a subset of . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
hoissre.1 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoissre ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐼(𝑘)

Proof of Theorem hoissre
StepHypRef Expression
1 hoissre.1 . . . 4 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 481 . . 3 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 485 . . 3 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 43877 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelcdmda 7083 . . . 4 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 8003 . . . 4 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . 3 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
8 xp2nd 8004 . . . . 5 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
95, 8syl 17 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
109rexrd 11260 . . 3 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ*)
11 icossre 13401 . . 3 (((1st ‘(𝐼𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼𝑘)) ∈ ℝ*) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ⊆ ℝ)
127, 10, 11syl2anc 584 . 2 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) ⊆ ℝ)
134, 12eqsstrd 4019 1 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3947   × cxp 5673  ccom 5679  wf 6536  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  cr 11105  *cxr 11243  [,)cico 13322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-ico 13326
This theorem is referenced by:  hoissrrn  45251
  Copyright terms: Public domain W3C validator