Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0lem Structured version   Visualization version   GIF version

Theorem ovn0lem 44103
Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovn0lem.x (𝜑𝑋 ∈ Fin)
ovn0lem.n0 (𝜑𝑋 ≠ ∅)
ovn0lem.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
ovn0lem.infm (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
ovn0lem.i 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
Assertion
Ref Expression
ovn0lem (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Distinct variable groups:   𝑖,𝐼,𝑗,𝑘   𝐼,𝑙,𝑗,𝑘   𝑖,𝑋,𝑗,𝑘,𝑧   𝑋,𝑙   𝜑,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐼(𝑧)   𝑀(𝑧,𝑖,𝑗,𝑘,𝑙)

Proof of Theorem ovn0lem
StepHypRef Expression
1 iccssxr 13162 . . 3 (0[,]+∞) ⊆ ℝ*
2 ovn0lem.infm . . 3 (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
31, 2sselid 3919 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ∈ ℝ*)
4 0xr 11022 . . 3 0 ∈ ℝ*
54a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
6 ovn0lem.m . . . . 5 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
7 ssrab2 4013 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))} ⊆ ℝ*
86, 7eqsstri 3955 . . . 4 𝑀 ⊆ ℝ*
98a1i 11 . . 3 (𝜑𝑀 ⊆ ℝ*)
10 1re 10975 . . . . . . . . . . . . . 14 1 ∈ ℝ
11 0re 10977 . . . . . . . . . . . . . 14 0 ∈ ℝ
1210, 11pm3.2i 471 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ∈ ℝ)
13 opelxp 5625 . . . . . . . . . . . . 13 (⟨1, 0⟩ ∈ (ℝ × ℝ) ↔ (1 ∈ ℝ ∧ 0 ∈ ℝ))
1412, 13mpbir 230 . . . . . . . . . . . 12 ⟨1, 0⟩ ∈ (ℝ × ℝ)
1514a1i 11 . . . . . . . . . . 11 ((𝜑𝑙𝑋) → ⟨1, 0⟩ ∈ (ℝ × ℝ))
16 eqid 2738 . . . . . . . . . . 11 (𝑙𝑋 ↦ ⟨1, 0⟩) = (𝑙𝑋 ↦ ⟨1, 0⟩)
1715, 16fmptd 6988 . . . . . . . . . 10 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ))
18 reex 10962 . . . . . . . . . . . . 13 ℝ ∈ V
1918, 18xpex 7603 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ × ℝ) ∈ V)
21 ovn0lem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
22 elmapg 8628 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2320, 21, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2417, 23mpbird 256 . . . . . . . . 9 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
2524adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
26 ovn0lem.i . . . . . . . 8 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
2725, 26fmptd 6988 . . . . . . 7 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
28 ovexd 7310 . . . . . . . 8 (𝜑 → ((ℝ × ℝ) ↑m 𝑋) ∈ V)
29 nnex 11979 . . . . . . . . 9 ℕ ∈ V
3029a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
31 elmapg 8628 . . . . . . . 8 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3228, 30, 31syl2anc 584 . . . . . . 7 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3327, 32mpbird 256 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
34 ovn0lem.n0 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
35 n0 4280 . . . . . . . . . . . 12 (𝑋 ≠ ∅ ↔ ∃𝑙 𝑙𝑋)
3634, 35sylib 217 . . . . . . . . . . 11 (𝜑 → ∃𝑙 𝑙𝑋)
3736adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∃𝑙 𝑙𝑋)
38 nfv 1917 . . . . . . . . . . . . 13 𝑘((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)
39 nfcv 2907 . . . . . . . . . . . . 13 𝑘(vol‘(([,) ∘ (𝐼𝑗))‘𝑙))
4021ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑋 ∈ Fin)
4127ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
42 elmapi 8637 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4443adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
45 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4644, 45fvovco 42732 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
47 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4825elexd 3452 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V)
4926fvmpt2 6886 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5047, 48, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5150adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
52 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ⟨1, 0⟩ = ⟨1, 0⟩)
5314elexi 3451 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨1, 0⟩ ∈ V
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨1, 0⟩ ∈ V)
5551, 52, 45, 54fvmptd 6882 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) = ⟨1, 0⟩)
5655fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = (1st ‘⟨1, 0⟩))
5710elexi 3451 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
584elexi 3451 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
5957, 58op1st 7839 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨1, 0⟩) = 1
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨1, 0⟩) = 1)
6156, 60eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = 1)
6255fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = (2nd ‘⟨1, 0⟩))
6357, 58op2nd 7840 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨1, 0⟩) = 0
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨1, 0⟩) = 0)
6562, 64eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = 0)
6661, 65oveq12d 7293 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (1[,)0))
67 0le1 11498 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
68 1xr 11034 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
69 ico0 13125 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((1[,)0) = ∅ ↔ 0 ≤ 1))
7068, 4, 69mp2an 689 . . . . . . . . . . . . . . . . . . . 20 ((1[,)0) = ∅ ↔ 0 ≤ 1)
7167, 70mpbir 230 . . . . . . . . . . . . . . . . . . 19 (1[,)0) = ∅
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1[,)0) = ∅)
7346, 66, 723eqtrd 2782 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ∅)
7473fveq2d 6778 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘∅))
75 vol0 43500 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
7675a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘∅) = 0)
7774, 76eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
78 0cn 10967 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
7978a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 0 ∈ ℂ)
8077, 79eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
8180adantlr 712 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
82 2fveq3 6779 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)))
83 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑙𝑋)
84 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (𝑘𝑋𝑙𝑋))
8584anbi2d 629 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)))
8682eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → ((vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0 ↔ (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0))
8785, 86imbi12d 345 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0) ↔ (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)))
8887, 77chvarvv 2002 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)
8938, 39, 40, 81, 82, 83, 88fprod0 43137 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9089ex 413 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9190exlimdv 1936 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (∃𝑙 𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9237, 91mpd 15 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9392mpteq2dva 5174 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ 0))
9493fveq2d 6778 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ 0)))
95 nfv 1917 . . . . . . . 8 𝑗𝜑
9695, 30sge0z 43913 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 0)) = 0)
97 eqidd 2739 . . . . . . 7 (𝜑 → 0 = 0)
9894, 96, 973eqtrrd 2783 . . . . . 6 (𝜑 → 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
99 fveq1 6773 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
10099coeq2d 5771 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
101100fveq1d 6776 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
102101fveq2d 6778 . . . . . . . . . . 11 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
103102ralrimivw 3104 . . . . . . . . . 10 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
104103prodeq2d 15632 . . . . . . . . 9 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
105104mpteq2dv 5176 . . . . . . . 8 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
106105fveq2d 6778 . . . . . . 7 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
107106rspceeqv 3575 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
10833, 98, 107syl2anc 584 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1095, 108jca 512 . . . 4 (𝜑 → (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
110 eqeq1 2742 . . . . . 6 (𝑧 = 0 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
111110rexbidv 3226 . . . . 5 (𝑧 = 0 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
112111, 6elrab2 3627 . . . 4 (0 ∈ 𝑀 ↔ (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
113109, 112sylibr 233 . . 3 (𝜑 → 0 ∈ 𝑀)
114 infxrlb 13068 . . 3 ((𝑀 ⊆ ℝ* ∧ 0 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 0)
1159, 113, 114syl2anc 584 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ≤ 0)
116 pnfxr 11029 . . . 4 +∞ ∈ ℝ*
117116a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
118 iccgelb 13135 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ inf(𝑀, ℝ*, < ) ∈ (0[,]+∞)) → 0 ≤ inf(𝑀, ℝ*, < ))
1195, 117, 2, 118syl3anc 1370 . 2 (𝜑 → 0 ≤ inf(𝑀, ℝ*, < ))
1203, 5, 115, 119xrletrid 12889 1 (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Fincfn 8733  infcinf 9200  cc 10869  cr 10870  0cc0 10871  1c1 10872  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cn 11973  [,)cico 13081  [,]cicc 13082  cprod 15615  volcvol 24627  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prod 15616  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-sumge0 43901
This theorem is referenced by:  ovn0  44104
  Copyright terms: Public domain W3C validator