Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0lem Structured version   Visualization version   GIF version

Theorem ovn0lem 43993
Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovn0lem.x (𝜑𝑋 ∈ Fin)
ovn0lem.n0 (𝜑𝑋 ≠ ∅)
ovn0lem.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
ovn0lem.infm (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
ovn0lem.i 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
Assertion
Ref Expression
ovn0lem (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Distinct variable groups:   𝑖,𝐼,𝑗,𝑘   𝐼,𝑙,𝑗,𝑘   𝑖,𝑋,𝑗,𝑘,𝑧   𝑋,𝑙   𝜑,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐼(𝑧)   𝑀(𝑧,𝑖,𝑗,𝑘,𝑙)

Proof of Theorem ovn0lem
StepHypRef Expression
1 iccssxr 13091 . . 3 (0[,]+∞) ⊆ ℝ*
2 ovn0lem.infm . . 3 (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
31, 2sselid 3915 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ∈ ℝ*)
4 0xr 10953 . . 3 0 ∈ ℝ*
54a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
6 ovn0lem.m . . . . 5 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
7 ssrab2 4009 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))} ⊆ ℝ*
86, 7eqsstri 3951 . . . 4 𝑀 ⊆ ℝ*
98a1i 11 . . 3 (𝜑𝑀 ⊆ ℝ*)
10 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
11 0re 10908 . . . . . . . . . . . . . 14 0 ∈ ℝ
1210, 11pm3.2i 470 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ∈ ℝ)
13 opelxp 5616 . . . . . . . . . . . . 13 (⟨1, 0⟩ ∈ (ℝ × ℝ) ↔ (1 ∈ ℝ ∧ 0 ∈ ℝ))
1412, 13mpbir 230 . . . . . . . . . . . 12 ⟨1, 0⟩ ∈ (ℝ × ℝ)
1514a1i 11 . . . . . . . . . . 11 ((𝜑𝑙𝑋) → ⟨1, 0⟩ ∈ (ℝ × ℝ))
16 eqid 2738 . . . . . . . . . . 11 (𝑙𝑋 ↦ ⟨1, 0⟩) = (𝑙𝑋 ↦ ⟨1, 0⟩)
1715, 16fmptd 6970 . . . . . . . . . 10 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ))
18 reex 10893 . . . . . . . . . . . . 13 ℝ ∈ V
1918, 18xpex 7581 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ × ℝ) ∈ V)
21 ovn0lem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
22 elmapg 8586 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2320, 21, 22syl2anc 583 . . . . . . . . . 10 (𝜑 → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2417, 23mpbird 256 . . . . . . . . 9 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
2524adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
26 ovn0lem.i . . . . . . . 8 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
2725, 26fmptd 6970 . . . . . . 7 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
28 ovexd 7290 . . . . . . . 8 (𝜑 → ((ℝ × ℝ) ↑m 𝑋) ∈ V)
29 nnex 11909 . . . . . . . . 9 ℕ ∈ V
3029a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
31 elmapg 8586 . . . . . . . 8 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3228, 30, 31syl2anc 583 . . . . . . 7 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3327, 32mpbird 256 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
34 ovn0lem.n0 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
35 n0 4277 . . . . . . . . . . . 12 (𝑋 ≠ ∅ ↔ ∃𝑙 𝑙𝑋)
3634, 35sylib 217 . . . . . . . . . . 11 (𝜑 → ∃𝑙 𝑙𝑋)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∃𝑙 𝑙𝑋)
38 nfv 1918 . . . . . . . . . . . . 13 𝑘((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)
39 nfcv 2906 . . . . . . . . . . . . 13 𝑘(vol‘(([,) ∘ (𝐼𝑗))‘𝑙))
4021ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑋 ∈ Fin)
4127ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
42 elmapi 8595 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4443adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
45 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4644, 45fvovco 42621 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4825elexd 3442 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V)
4926fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5047, 48, 49syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
52 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ⟨1, 0⟩ = ⟨1, 0⟩)
5314elexi 3441 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨1, 0⟩ ∈ V
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨1, 0⟩ ∈ V)
5551, 52, 45, 54fvmptd 6864 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) = ⟨1, 0⟩)
5655fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = (1st ‘⟨1, 0⟩))
5710elexi 3441 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
584elexi 3441 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
5957, 58op1st 7812 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨1, 0⟩) = 1
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨1, 0⟩) = 1)
6156, 60eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = 1)
6255fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = (2nd ‘⟨1, 0⟩))
6357, 58op2nd 7813 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨1, 0⟩) = 0
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨1, 0⟩) = 0)
6562, 64eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = 0)
6661, 65oveq12d 7273 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (1[,)0))
67 0le1 11428 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
68 1xr 10965 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
69 ico0 13054 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((1[,)0) = ∅ ↔ 0 ≤ 1))
7068, 4, 69mp2an 688 . . . . . . . . . . . . . . . . . . . 20 ((1[,)0) = ∅ ↔ 0 ≤ 1)
7167, 70mpbir 230 . . . . . . . . . . . . . . . . . . 19 (1[,)0) = ∅
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1[,)0) = ∅)
7346, 66, 723eqtrd 2782 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ∅)
7473fveq2d 6760 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘∅))
75 vol0 43390 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
7675a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘∅) = 0)
7774, 76eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
78 0cn 10898 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
7978a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 0 ∈ ℂ)
8077, 79eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
8180adantlr 711 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
82 2fveq3 6761 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)))
83 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑙𝑋)
84 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (𝑘𝑋𝑙𝑋))
8584anbi2d 628 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)))
8682eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → ((vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0 ↔ (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0))
8785, 86imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0) ↔ (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)))
8887, 77chvarvv 2003 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)
8938, 39, 40, 81, 82, 83, 88fprod0 43027 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9089ex 412 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9190exlimdv 1937 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (∃𝑙 𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9237, 91mpd 15 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9392mpteq2dva 5170 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ 0))
9493fveq2d 6760 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ 0)))
95 nfv 1918 . . . . . . . 8 𝑗𝜑
9695, 30sge0z 43803 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 0)) = 0)
97 eqidd 2739 . . . . . . 7 (𝜑 → 0 = 0)
9894, 96, 973eqtrrd 2783 . . . . . 6 (𝜑 → 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
99 fveq1 6755 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
10099coeq2d 5760 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
101100fveq1d 6758 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
102101fveq2d 6760 . . . . . . . . . . 11 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
103102ralrimivw 3108 . . . . . . . . . 10 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
104103prodeq2d 15560 . . . . . . . . 9 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
105104mpteq2dv 5172 . . . . . . . 8 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
106105fveq2d 6760 . . . . . . 7 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
107106rspceeqv 3567 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
10833, 98, 107syl2anc 583 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1095, 108jca 511 . . . 4 (𝜑 → (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
110 eqeq1 2742 . . . . . 6 (𝑧 = 0 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
111110rexbidv 3225 . . . . 5 (𝑧 = 0 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
112111, 6elrab2 3620 . . . 4 (0 ∈ 𝑀 ↔ (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
113109, 112sylibr 233 . . 3 (𝜑 → 0 ∈ 𝑀)
114 infxrlb 12997 . . 3 ((𝑀 ⊆ ℝ* ∧ 0 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 0)
1159, 113, 114syl2anc 583 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ≤ 0)
116 pnfxr 10960 . . . 4 +∞ ∈ ℝ*
117116a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
118 iccgelb 13064 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ inf(𝑀, ℝ*, < ) ∈ (0[,]+∞)) → 0 ≤ inf(𝑀, ℝ*, < ))
1195, 117, 2, 118syl3anc 1369 . 2 (𝜑 → 0 ≤ inf(𝑀, ℝ*, < ))
1203, 5, 115, 119xrletrid 12818 1 (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Fincfn 8691  infcinf 9130  cc 10800  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cn 11903  [,)cico 13010  [,]cicc 13011  cprod 15543  volcvol 24532  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-prod 15544  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-sumge0 43791
This theorem is referenced by:  ovn0  43994
  Copyright terms: Public domain W3C validator