Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0lem Structured version   Visualization version   GIF version

Theorem ovn0lem 46580
Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovn0lem.x (𝜑𝑋 ∈ Fin)
ovn0lem.n0 (𝜑𝑋 ≠ ∅)
ovn0lem.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
ovn0lem.infm (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
ovn0lem.i 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
Assertion
Ref Expression
ovn0lem (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Distinct variable groups:   𝑖,𝐼,𝑗,𝑘   𝐼,𝑙,𝑗,𝑘   𝑖,𝑋,𝑗,𝑘,𝑧   𝑋,𝑙   𝜑,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐼(𝑧)   𝑀(𝑧,𝑖,𝑗,𝑘,𝑙)

Proof of Theorem ovn0lem
StepHypRef Expression
1 iccssxr 13470 . . 3 (0[,]+∞) ⊆ ℝ*
2 ovn0lem.infm . . 3 (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
31, 2sselid 3981 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ∈ ℝ*)
4 0xr 11308 . . 3 0 ∈ ℝ*
54a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
6 ovn0lem.m . . . . 5 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
7 ssrab2 4080 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))} ⊆ ℝ*
86, 7eqsstri 4030 . . . 4 𝑀 ⊆ ℝ*
98a1i 11 . . 3 (𝜑𝑀 ⊆ ℝ*)
10 1re 11261 . . . . . . . . . . . . . 14 1 ∈ ℝ
11 0re 11263 . . . . . . . . . . . . . 14 0 ∈ ℝ
1210, 11pm3.2i 470 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ∈ ℝ)
13 opelxp 5721 . . . . . . . . . . . . 13 (⟨1, 0⟩ ∈ (ℝ × ℝ) ↔ (1 ∈ ℝ ∧ 0 ∈ ℝ))
1412, 13mpbir 231 . . . . . . . . . . . 12 ⟨1, 0⟩ ∈ (ℝ × ℝ)
1514a1i 11 . . . . . . . . . . 11 ((𝜑𝑙𝑋) → ⟨1, 0⟩ ∈ (ℝ × ℝ))
16 eqid 2737 . . . . . . . . . . 11 (𝑙𝑋 ↦ ⟨1, 0⟩) = (𝑙𝑋 ↦ ⟨1, 0⟩)
1715, 16fmptd 7134 . . . . . . . . . 10 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ))
18 reex 11246 . . . . . . . . . . . . 13 ℝ ∈ V
1918, 18xpex 7773 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ × ℝ) ∈ V)
21 ovn0lem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
22 elmapg 8879 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2320, 21, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2417, 23mpbird 257 . . . . . . . . 9 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
2524adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑m 𝑋))
26 ovn0lem.i . . . . . . . 8 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
2725, 26fmptd 7134 . . . . . . 7 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
28 ovexd 7466 . . . . . . . 8 (𝜑 → ((ℝ × ℝ) ↑m 𝑋) ∈ V)
29 nnex 12272 . . . . . . . . 9 ℕ ∈ V
3029a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
31 elmapg 8879 . . . . . . . 8 ((((ℝ × ℝ) ↑m 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3228, 30, 31syl2anc 584 . . . . . . 7 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋)))
3327, 32mpbird 257 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
34 ovn0lem.n0 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
35 n0 4353 . . . . . . . . . . . 12 (𝑋 ≠ ∅ ↔ ∃𝑙 𝑙𝑋)
3634, 35sylib 218 . . . . . . . . . . 11 (𝜑 → ∃𝑙 𝑙𝑋)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∃𝑙 𝑙𝑋)
38 nfv 1914 . . . . . . . . . . . . 13 𝑘((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)
39 nfcv 2905 . . . . . . . . . . . . 13 𝑘(vol‘(([,) ∘ (𝐼𝑗))‘𝑙))
4021ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑋 ∈ Fin)
4127ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
42 elmapi 8889 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4443adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
45 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4644, 45fvovco 45198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4825elexd 3504 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V)
4926fvmpt2 7027 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5047, 48, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
52 eqidd 2738 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ⟨1, 0⟩ = ⟨1, 0⟩)
5314elexi 3503 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨1, 0⟩ ∈ V
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨1, 0⟩ ∈ V)
5551, 52, 45, 54fvmptd 7023 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) = ⟨1, 0⟩)
5655fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = (1st ‘⟨1, 0⟩))
5710elexi 3503 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
584elexi 3503 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
5957, 58op1st 8022 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨1, 0⟩) = 1
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨1, 0⟩) = 1)
6156, 60eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = 1)
6255fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = (2nd ‘⟨1, 0⟩))
6357, 58op2nd 8023 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨1, 0⟩) = 0
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨1, 0⟩) = 0)
6562, 64eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = 0)
6661, 65oveq12d 7449 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (1[,)0))
67 0le1 11786 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
68 1xr 11320 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
69 ico0 13433 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((1[,)0) = ∅ ↔ 0 ≤ 1))
7068, 4, 69mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((1[,)0) = ∅ ↔ 0 ≤ 1)
7167, 70mpbir 231 . . . . . . . . . . . . . . . . . . 19 (1[,)0) = ∅
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1[,)0) = ∅)
7346, 66, 723eqtrd 2781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ∅)
7473fveq2d 6910 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘∅))
75 vol0 45974 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
7675a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘∅) = 0)
7774, 76eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
78 0cn 11253 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
7978a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 0 ∈ ℂ)
8077, 79eqeltrd 2841 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
8180adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
82 2fveq3 6911 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)))
83 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑙𝑋)
84 eleq1w 2824 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (𝑘𝑋𝑙𝑋))
8584anbi2d 630 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)))
8682eqeq1d 2739 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → ((vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0 ↔ (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0))
8785, 86imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0) ↔ (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)))
8887, 77chvarvv 1998 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)
8938, 39, 40, 81, 82, 83, 88fprod0 45611 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9089ex 412 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9190exlimdv 1933 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (∃𝑙 𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9237, 91mpd 15 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9392mpteq2dva 5242 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ 0))
9493fveq2d 6910 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ 0)))
95 nfv 1914 . . . . . . . 8 𝑗𝜑
9695, 30sge0z 46390 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 0)) = 0)
97 eqidd 2738 . . . . . . 7 (𝜑 → 0 = 0)
9894, 96, 973eqtrrd 2782 . . . . . 6 (𝜑 → 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
99 fveq1 6905 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
10099coeq2d 5873 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
101100fveq1d 6908 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
102101fveq2d 6910 . . . . . . . . . . 11 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
103102ralrimivw 3150 . . . . . . . . . 10 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
104103prodeq2d 15957 . . . . . . . . 9 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
105104mpteq2dv 5244 . . . . . . . 8 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
106105fveq2d 6910 . . . . . . 7 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
107106rspceeqv 3645 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
10833, 98, 107syl2anc 584 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1095, 108jca 511 . . . 4 (𝜑 → (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
110 eqeq1 2741 . . . . . 6 (𝑧 = 0 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
111110rexbidv 3179 . . . . 5 (𝑧 = 0 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
112111, 6elrab2 3695 . . . 4 (0 ∈ 𝑀 ↔ (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
113109, 112sylibr 234 . . 3 (𝜑 → 0 ∈ 𝑀)
114 infxrlb 13376 . . 3 ((𝑀 ⊆ ℝ* ∧ 0 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 0)
1159, 113, 114syl2anc 584 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ≤ 0)
116 pnfxr 11315 . . . 4 +∞ ∈ ℝ*
117116a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
118 iccgelb 13443 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ inf(𝑀, ℝ*, < ) ∈ (0[,]+∞)) → 0 ≤ inf(𝑀, ℝ*, < ))
1195, 117, 2, 118syl3anc 1373 . 2 (𝜑 → 0 ≤ inf(𝑀, ℝ*, < ))
1203, 5, 115, 119xrletrid 13197 1 (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  c0 4333  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  m cmap 8866  Fincfn 8985  infcinf 9481  cc 11153  cr 11154  0cc0 11155  1c1 11156  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cn 12266  [,)cico 13389  [,]cicc 13390  cprod 15939  volcvol 25498  Σ^csumge0 46377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-prod 15940  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-sumge0 46378
This theorem is referenced by:  ovn0  46581
  Copyright terms: Public domain W3C validator