Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0lem Structured version   Visualization version   GIF version

Theorem ovn0lem 41351
Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovn0lem.x (𝜑𝑋 ∈ Fin)
ovn0lem.n0 (𝜑𝑋 ≠ ∅)
ovn0lem.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
ovn0lem.infm (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
ovn0lem.i 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
Assertion
Ref Expression
ovn0lem (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Distinct variable groups:   𝑖,𝐼,𝑗,𝑘   𝐼,𝑙,𝑗,𝑘   𝑖,𝑋,𝑗,𝑘,𝑧   𝑋,𝑙   𝜑,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐼(𝑧)   𝑀(𝑧,𝑖,𝑗,𝑘,𝑙)

Proof of Theorem ovn0lem
StepHypRef Expression
1 iccssxr 12458 . . 3 (0[,]+∞) ⊆ ℝ*
2 ovn0lem.infm . . 3 (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
31, 2sseldi 3759 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ∈ ℝ*)
4 0xr 10340 . . 3 0 ∈ ℝ*
54a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
6 ovn0lem.m . . . . 5 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
7 ssrab2 3847 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))} ⊆ ℝ*
86, 7eqsstri 3795 . . . 4 𝑀 ⊆ ℝ*
98a1i 11 . . 3 (𝜑𝑀 ⊆ ℝ*)
10 1re 10293 . . . . . . . . . . . . . 14 1 ∈ ℝ
11 0re 10295 . . . . . . . . . . . . . 14 0 ∈ ℝ
1210, 11pm3.2i 462 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ∈ ℝ)
13 opelxp 5313 . . . . . . . . . . . . 13 (⟨1, 0⟩ ∈ (ℝ × ℝ) ↔ (1 ∈ ℝ ∧ 0 ∈ ℝ))
1412, 13mpbir 222 . . . . . . . . . . . 12 ⟨1, 0⟩ ∈ (ℝ × ℝ)
1514a1i 11 . . . . . . . . . . 11 ((𝜑𝑙𝑋) → ⟨1, 0⟩ ∈ (ℝ × ℝ))
16 eqid 2765 . . . . . . . . . . 11 (𝑙𝑋 ↦ ⟨1, 0⟩) = (𝑙𝑋 ↦ ⟨1, 0⟩)
1715, 16fmptd 6574 . . . . . . . . . 10 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ))
18 reex 10280 . . . . . . . . . . . . 13 ℝ ∈ V
1918, 18xpex 7160 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ × ℝ) ∈ V)
21 ovn0lem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
22 elmapg 8073 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2320, 21, 22syl2anc 579 . . . . . . . . . 10 (𝜑 → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2417, 23mpbird 248 . . . . . . . . 9 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
2524adantr 472 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
26 ovn0lem.i . . . . . . . 8 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
2725, 26fmptd 6574 . . . . . . 7 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
28 ovexd 6876 . . . . . . . 8 (𝜑 → ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V)
29 nnex 11281 . . . . . . . . 9 ℕ ∈ V
3029a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
31 elmapg 8073 . . . . . . . 8 ((((ℝ × ℝ) ↑𝑚 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
3228, 30, 31syl2anc 579 . . . . . . 7 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
3327, 32mpbird 248 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
34 ovn0lem.n0 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
35 n0 4095 . . . . . . . . . . . 12 (𝑋 ≠ ∅ ↔ ∃𝑙 𝑙𝑋)
3634, 35sylib 209 . . . . . . . . . . 11 (𝜑 → ∃𝑙 𝑙𝑋)
3736adantr 472 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∃𝑙 𝑙𝑋)
38 nfv 2009 . . . . . . . . . . . . 13 𝑘((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)
39 nfcv 2907 . . . . . . . . . . . . 13 𝑘(vol‘(([,) ∘ (𝐼𝑗))‘𝑙))
4021ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑋 ∈ Fin)
4127ffvelrnda 6549 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
42 elmapi 8082 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4443adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
45 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4644, 45fvovco 39960 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
47 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4825elexd 3367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V)
4926fvmpt2 6480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5047, 48, 49syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5150adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
52 eqidd 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ⟨1, 0⟩ = ⟨1, 0⟩)
5314elexi 3366 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨1, 0⟩ ∈ V
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨1, 0⟩ ∈ V)
5551, 52, 45, 54fvmptd 6477 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) = ⟨1, 0⟩)
5655fveq2d 6379 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = (1st ‘⟨1, 0⟩))
5710elexi 3366 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
584elexi 3366 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
5957, 58op1st 7374 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨1, 0⟩) = 1
6059a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨1, 0⟩) = 1)
6156, 60eqtrd 2799 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = 1)
6255fveq2d 6379 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = (2nd ‘⟨1, 0⟩))
6357, 58op2nd 7375 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨1, 0⟩) = 0
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨1, 0⟩) = 0)
6562, 64eqtrd 2799 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = 0)
6661, 65oveq12d 6860 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (1[,)0))
67 0le1 10805 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
6810rexri 10351 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
69 ico0 12423 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((1[,)0) = ∅ ↔ 0 ≤ 1))
7068, 4, 69mp2an 683 . . . . . . . . . . . . . . . . . . . 20 ((1[,)0) = ∅ ↔ 0 ≤ 1)
7167, 70mpbir 222 . . . . . . . . . . . . . . . . . . 19 (1[,)0) = ∅
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1[,)0) = ∅)
7346, 66, 723eqtrd 2803 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ∅)
7473fveq2d 6379 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘∅))
75 vol0 40744 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
7675a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘∅) = 0)
7774, 76eqtrd 2799 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
78 0cn 10285 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
7978a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 0 ∈ ℂ)
8077, 79eqeltrd 2844 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
8180adantlr 706 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
82 2fveq3 6380 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)))
83 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑙𝑋)
84 eleq1w 2827 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (𝑘𝑋𝑙𝑋))
8584anbi2d 622 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)))
8682eqeq1d 2767 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → ((vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0 ↔ (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0))
8785, 86imbi12d 335 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0) ↔ (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)))
8887, 77chvarv 2369 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)
8938, 39, 40, 81, 82, 83, 88fprod0 40398 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9089ex 401 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9190exlimdv 2028 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (∃𝑙 𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9237, 91mpd 15 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9392mpteq2dva 4903 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ 0))
9493fveq2d 6379 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ 0)))
95 nfv 2009 . . . . . . . 8 𝑗𝜑
9695, 30sge0z 41161 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 0)) = 0)
97 eqidd 2766 . . . . . . 7 (𝜑 → 0 = 0)
9894, 96, 973eqtrrd 2804 . . . . . 6 (𝜑 → 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
99 fveq1 6374 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
10099coeq2d 5453 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
101100fveq1d 6377 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
102101fveq2d 6379 . . . . . . . . . . 11 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
103102ralrimivw 3114 . . . . . . . . . 10 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
104103prodeq2d 14937 . . . . . . . . 9 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
105104mpteq2dv 4904 . . . . . . . 8 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
106105fveq2d 6379 . . . . . . 7 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
107106rspceeqv 3479 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
10833, 98, 107syl2anc 579 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1095, 108jca 507 . . . 4 (𝜑 → (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
110 eqeq1 2769 . . . . . 6 (𝑧 = 0 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
111110rexbidv 3199 . . . . 5 (𝑧 = 0 → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
112111, 6elrab2 3523 . . . 4 (0 ∈ 𝑀 ↔ (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
113109, 112sylibr 225 . . 3 (𝜑 → 0 ∈ 𝑀)
114 infxrlb 12366 . . 3 ((𝑀 ⊆ ℝ* ∧ 0 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 0)
1159, 113, 114syl2anc 579 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ≤ 0)
116 pnfxr 10346 . . . 4 +∞ ∈ ℝ*
117116a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
118 iccgelb 12432 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ inf(𝑀, ℝ*, < ) ∈ (0[,]+∞)) → 0 ≤ inf(𝑀, ℝ*, < ))
1195, 117, 2, 118syl3anc 1490 . 2 (𝜑 → 0 ≤ inf(𝑀, ℝ*, < ))
1203, 5, 115, 119xrletrid 12188 1 (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  {crab 3059  Vcvv 3350  wss 3732  c0 4079  cop 4340   class class class wbr 4809  cmpt 4888   × cxp 5275  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  𝑚 cmap 8060  Fincfn 8160  infcinf 8554  cc 10187  cr 10188  0cc0 10189  1c1 10190  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  cn 11274  [,)cico 12379  [,]cicc 12380  cprod 14920  volcvol 23521  Σ^csumge0 41148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xadd 12147  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704  df-prod 14921  df-xmet 20012  df-met 20013  df-ovol 23522  df-vol 23523  df-sumge0 41149
This theorem is referenced by:  ovn0  41352
  Copyright terms: Public domain W3C validator