![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubdi | Structured version Visualization version GIF version |
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdi.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdi.t | ⊢ · = (.g‘𝐺) |
mulgsubdi.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdi | ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Abel) | |
2 | simpr1 1194 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
3 | simpr2 1195 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
4 | ablgrp 19567 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Grp) |
6 | simpr3 1196 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | mulgsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
8 | eqid 2736 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
9 | 7, 8 | grpinvcl 18798 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
11 | mulgsubdi.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
12 | eqid 2736 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 7, 11, 12 | mulgdi 19605 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
14 | 1, 2, 3, 10, 13 | syl13anc 1372 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
15 | 7, 11, 8 | mulginvcom 18901 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
16 | 5, 2, 6, 15 | syl3anc 1371 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
17 | 16 | oveq2d 7373 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
18 | 14, 17 | eqtrd 2776 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
19 | mulgsubdi.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
20 | 7, 12, 8, 19 | grpsubval 18796 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
21 | 3, 6, 20 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
22 | 21 | oveq2d 7373 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)))) |
23 | 7, 11 | mulgcl 18893 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
24 | 5, 2, 3, 23 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
25 | 7, 11 | mulgcl 18893 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) ∈ 𝐵) |
26 | 5, 2, 6, 25 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑌) ∈ 𝐵) |
27 | 7, 12, 8, 19 | grpsubval 18796 | . . 3 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
28 | 24, 26, 27 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
29 | 18, 22, 28 | 3eqtr4d 2786 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6496 (class class class)co 7357 ℤcz 12499 Basecbs 17083 +gcplusg 17133 Grpcgrp 18748 invgcminusg 18749 -gcsg 18750 .gcmg 18872 Abelcabl 19563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-cmn 19564 df-abl 19565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |