Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdi Structured version   Visualization version   GIF version

Theorem mulgsubdi 18964
 Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdi.b 𝐵 = (Base‘𝐺)
mulgsubdi.t · = (.g𝐺)
mulgsubdi.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))

Proof of Theorem mulgsubdi
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simpr1 1191 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
3 simpr2 1192 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 ablgrp 18924 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
54adantr 484 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
6 simpr3 1193 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
7 mulgsubdi.b . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2798 . . . . . 6 (invg𝐺) = (invg𝐺)
97, 8grpinvcl 18164 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
105, 6, 9syl2anc 587 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 mulgsubdi.t . . . . 5 · = (.g𝐺)
12 eqid 2798 . . . . 5 (+g𝐺) = (+g𝐺)
137, 11, 12mulgdi 18961 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
141, 2, 3, 10, 13syl13anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
157, 11, 8mulginvcom 18265 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
165, 2, 6, 15syl3anc 1368 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
1716oveq2d 7161 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
1814, 17eqtrd 2833 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
19 mulgsubdi.d . . . . 5 = (-g𝐺)
207, 12, 8, 19grpsubval 18162 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
213, 6, 20syl2anc 587 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2221oveq2d 7161 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))))
237, 11mulgcl 18258 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
245, 2, 3, 23syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
257, 11mulgcl 18258 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
265, 2, 6, 25syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
277, 12, 8, 19grpsubval 18162 . . 3 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2824, 26, 27syl2anc 587 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2918, 22, 283eqtr4d 2843 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6332  (class class class)co 7145  ℤcz 11989  Basecbs 16495  +gcplusg 16577  Grpcgrp 18115  invgcminusg 18116  -gcsg 18117  .gcmg 18237  Abelcabl 18920 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-0g 16727  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-grp 18118  df-minusg 18119  df-sbg 18120  df-mulg 18238  df-cmn 18921  df-abl 18922 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator