![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubdi | Structured version Visualization version GIF version |
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdi.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdi.t | ⊢ · = (.g‘𝐺) |
mulgsubdi.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdi | ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Abel) | |
2 | simpr1 1191 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
3 | simpr2 1192 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
4 | ablgrp 19695 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Grp) |
6 | simpr3 1193 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | mulgsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
8 | eqid 2724 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
9 | 7, 8 | grpinvcl 18907 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 583 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
11 | mulgsubdi.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
12 | eqid 2724 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 7, 11, 12 | mulgdi 19736 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
14 | 1, 2, 3, 10, 13 | syl13anc 1369 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
15 | 7, 11, 8 | mulginvcom 19016 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
16 | 5, 2, 6, 15 | syl3anc 1368 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
17 | 16 | oveq2d 7417 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
18 | 14, 17 | eqtrd 2764 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
19 | mulgsubdi.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
20 | 7, 12, 8, 19 | grpsubval 18905 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
21 | 3, 6, 20 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
22 | 21 | oveq2d 7417 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)))) |
23 | 7, 11 | mulgcl 19008 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
24 | 5, 2, 3, 23 | syl3anc 1368 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
25 | 7, 11 | mulgcl 19008 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) ∈ 𝐵) |
26 | 5, 2, 6, 25 | syl3anc 1368 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑌) ∈ 𝐵) |
27 | 7, 12, 8, 19 | grpsubval 18905 | . . 3 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
28 | 24, 26, 27 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
29 | 18, 22, 28 | 3eqtr4d 2774 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 ℤcz 12555 Basecbs 17143 +gcplusg 17196 Grpcgrp 18853 invgcminusg 18854 -gcsg 18855 .gcmg 18985 Abelcabl 19691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-seq 13964 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-sbg 18858 df-mulg 18986 df-cmn 19692 df-abl 19693 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |