MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdi Structured version   Visualization version   GIF version

Theorem mulgsubdi 19431
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdi.b 𝐵 = (Base‘𝐺)
mulgsubdi.t · = (.g𝐺)
mulgsubdi.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))

Proof of Theorem mulgsubdi
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simpr1 1193 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
3 simpr2 1194 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 ablgrp 19391 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
54adantr 481 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
6 simpr3 1195 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
7 mulgsubdi.b . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2738 . . . . . 6 (invg𝐺) = (invg𝐺)
97, 8grpinvcl 18627 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
105, 6, 9syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 mulgsubdi.t . . . . 5 · = (.g𝐺)
12 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
137, 11, 12mulgdi 19428 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
141, 2, 3, 10, 13syl13anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
157, 11, 8mulginvcom 18728 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
165, 2, 6, 15syl3anc 1370 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
1716oveq2d 7291 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
1814, 17eqtrd 2778 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
19 mulgsubdi.d . . . . 5 = (-g𝐺)
207, 12, 8, 19grpsubval 18625 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
213, 6, 20syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2221oveq2d 7291 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))))
237, 11mulgcl 18721 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
245, 2, 3, 23syl3anc 1370 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
257, 11mulgcl 18721 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
265, 2, 6, 25syl3anc 1370 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
277, 12, 8, 19grpsubval 18625 . . 3 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2824, 26, 27syl2anc 584 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2918, 22, 283eqtr4d 2788 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cz 12319  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  .gcmg 18700  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-cmn 19388  df-abl 19389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator