Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgsubdi | Structured version Visualization version GIF version |
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdi.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdi.t | ⊢ · = (.g‘𝐺) |
mulgsubdi.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdi | ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Abel) | |
2 | simpr1 1196 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
3 | simpr2 1197 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
4 | ablgrp 19175 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Grp) |
6 | simpr3 1198 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | mulgsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
8 | eqid 2737 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
9 | 7, 8 | grpinvcl 18415 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 587 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
11 | mulgsubdi.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
12 | eqid 2737 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 7, 11, 12 | mulgdi 19212 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
14 | 1, 2, 3, 10, 13 | syl13anc 1374 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌)))) |
15 | 7, 11, 8 | mulginvcom 18516 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
16 | 5, 2, 6, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · ((invg‘𝐺)‘𝑌)) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
17 | 16 | oveq2d 7229 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(𝑀 · ((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
18 | 14, 17 | eqtrd 2777 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
19 | mulgsubdi.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
20 | 7, 12, 8, 19 | grpsubval 18413 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
21 | 3, 6, 20 | syl2anc 587 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
22 | 21 | oveq2d 7229 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = (𝑀 · (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)))) |
23 | 7, 11 | mulgcl 18509 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
24 | 5, 2, 3, 23 | syl3anc 1373 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
25 | 7, 11 | mulgcl 18509 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) ∈ 𝐵) |
26 | 5, 2, 6, 25 | syl3anc 1373 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑌) ∈ 𝐵) |
27 | 7, 12, 8, 19 | grpsubval 18413 | . . 3 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
28 | 24, 26, 27 | syl2anc 587 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑀 · 𝑌)))) |
29 | 18, 22, 28 | 3eqtr4d 2787 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℤcz 12176 Basecbs 16760 +gcplusg 16802 Grpcgrp 18365 invgcminusg 18366 -gcsg 18367 .gcmg 18488 Abelcabl 19171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-cmn 19172 df-abl 19173 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |