MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdi Structured version   Visualization version   GIF version

Theorem mulgsubdi 19608
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdi.b 𝐵 = (Base‘𝐺)
mulgsubdi.t · = (.g𝐺)
mulgsubdi.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))

Proof of Theorem mulgsubdi
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simpr1 1194 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
3 simpr2 1195 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 ablgrp 19567 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
54adantr 481 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
6 simpr3 1196 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
7 mulgsubdi.b . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2736 . . . . . 6 (invg𝐺) = (invg𝐺)
97, 8grpinvcl 18798 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
105, 6, 9syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 mulgsubdi.t . . . . 5 · = (.g𝐺)
12 eqid 2736 . . . . 5 (+g𝐺) = (+g𝐺)
137, 11, 12mulgdi 19605 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
141, 2, 3, 10, 13syl13anc 1372 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
157, 11, 8mulginvcom 18901 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
165, 2, 6, 15syl3anc 1371 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
1716oveq2d 7373 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
1814, 17eqtrd 2776 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
19 mulgsubdi.d . . . . 5 = (-g𝐺)
207, 12, 8, 19grpsubval 18796 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
213, 6, 20syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2221oveq2d 7373 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))))
237, 11mulgcl 18893 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
245, 2, 3, 23syl3anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
257, 11mulgcl 18893 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
265, 2, 6, 25syl3anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
277, 12, 8, 19grpsubval 18796 . . 3 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2824, 26, 27syl2anc 584 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2918, 22, 283eqtr4d 2786 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cz 12499  Basecbs 17083  +gcplusg 17133  Grpcgrp 18748  invgcminusg 18749  -gcsg 18750  .gcmg 18872  Abelcabl 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-cmn 19564  df-abl 19565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator