| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricgrlic | Structured version Visualization version GIF version | ||
| Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| Ref | Expression |
|---|---|
| gricgrlic | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47916 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅) | |
| 2 | n0 4319 | . . . 4 ⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻)) | |
| 3 | uhgrimgrlim 47990 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻)) | |
| 4 | brgrilci 48001 | . . . . . . . 8 ⊢ (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) |
| 6 | 5 | 3expa 1118 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) |
| 7 | 6 | expcom 413 | . . . . 5 ⊢ (𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 8 | 7 | exlimiv 1930 | . . . 4 ⊢ (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 9 | 2, 8 | sylbi 217 | . . 3 ⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 10 | 1, 9 | sylbi 217 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 11 | 10 | com12 32 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 (class class class)co 7390 UHGraphcuhgr 28990 GraphIso cgrim 47879 ≃𝑔𝑟 cgric 47880 GraphLocIso cgrlim 47979 ≃𝑙𝑔𝑟 cgrlic 47980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-map 8804 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-clnbgr 47824 df-isubgr 47865 df-grim 47882 df-gric 47885 df-grlim 47981 df-grlic 47984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |