![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gricgrlic | Structured version Visualization version GIF version |
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
Ref | Expression |
---|---|
gricgrlic | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgric 47765 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅) | |
2 | n0 4376 | . . . 4 ⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻)) | |
3 | uhgrimgrlim 47811 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻)) | |
4 | brgrilci 47822 | . . . . . . . 8 ⊢ (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) |
6 | 5 | 3expa 1118 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) |
7 | 6 | expcom 413 | . . . . 5 ⊢ (𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
8 | 7 | exlimiv 1929 | . . . 4 ⊢ (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
9 | 2, 8 | sylbi 217 | . . 3 ⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
10 | 1, 9 | sylbi 217 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
11 | 10 | com12 32 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 class class class wbr 5166 (class class class)co 7448 UHGraphcuhgr 29091 GraphIso cgrim 47745 ≃𝑔𝑟 cgric 47746 GraphLocIso cgrlim 47800 ≃𝑙𝑔𝑟 cgrlic 47801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-vtx 29033 df-iedg 29034 df-edg 29083 df-uhgr 29093 df-clnbgr 47693 df-isubgr 47733 df-grim 47748 df-gric 47751 df-grlim 47802 df-grlic 47805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |