Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricgrlic Structured version   Visualization version   GIF version

Theorem gricgrlic 48180
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricgrlic ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))

Proof of Theorem gricgrlic
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 brgric 48074 . . 3 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0 4302 . . . 4 ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻))
3 uhgrimgrlim 48149 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻))
4 brgrilci 48167 . . . . . . . 8 (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺𝑙𝑔𝑟 𝐻)
53, 4syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
653expa 1118 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
76expcom 413 . . . . 5 (𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
87exlimiv 1931 . . . 4 (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
92, 8sylbi 217 . . 3 ((𝐺 GraphIso 𝐻) ≠ ∅ → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
101, 9sylbi 217 . 2 (𝐺𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
1110com12 32 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5095  (class class class)co 7355  UHGraphcuhgr 29055   GraphIso cgrim 48037  𝑔𝑟 cgric 48038   GraphLocIso cgrlim 48138  𝑙𝑔𝑟 cgrlic 48139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-1o 8394  df-map 8761  df-vtx 28997  df-iedg 28998  df-edg 29047  df-uhgr 29057  df-clnbgr 47981  df-isubgr 48023  df-grim 48040  df-gric 48043  df-grlim 48140  df-grlic 48143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator