![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gricgrlic | Structured version Visualization version GIF version |
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) |
Ref | Expression |
---|---|
gricgrlic | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgric 47496 | . . . 4 ⊢ (𝐺 ≃𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → (𝐺 GraphIso 𝐻) ≠ ∅) |
3 | n0 4346 | . . . 4 ⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻)) | |
4 | simp3l 1198 | . . . . . . . 8 ⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐺 ≃𝑔𝑟 𝐻 ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝐺 ∈ UHGraph) | |
5 | simp3r 1199 | . . . . . . . 8 ⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐺 ≃𝑔𝑟 𝐻 ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝐻 ∈ UHGraph) | |
6 | simp1 1133 | . . . . . . . 8 ⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐺 ≃𝑔𝑟 𝐻 ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝑖 ∈ (𝐺 GraphIso 𝐻)) | |
7 | uhgrimgrlim 47529 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻)) | |
8 | 4, 5, 6, 7 | syl3anc 1368 | . . . . . . 7 ⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐺 ≃𝑔𝑟 𝐻 ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻)) |
9 | brgrilci 47531 | . . . . . . 7 ⊢ (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐺 ≃𝑔𝑟 𝐻 ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) |
11 | 10 | 3exp 1116 | . . . . 5 ⊢ (𝑖 ∈ (𝐺 GraphIso 𝐻) → (𝐺 ≃𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻))) |
12 | 11 | exlimiv 1926 | . . . 4 ⊢ (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → (𝐺 ≃𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻))) |
13 | 3, 12 | sylbi 216 | . . 3 ⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ → (𝐺 ≃𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻))) |
14 | 2, 13 | mpcom 38 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
15 | 14 | com12 32 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∅c0 4322 class class class wbr 5145 (class class class)co 7416 UHGraphcuhgr 28989 GraphIso cgrim 47476 ≃𝑔𝑟 cgric 47477 GraphLocIso cgrlim 47518 ≃𝑙𝑔𝑟 cgrlic 47519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-1o 8488 df-map 8849 df-vtx 28931 df-iedg 28932 df-edg 28981 df-uhgr 28991 df-clnbgr 47427 df-isubgr 47464 df-grim 47479 df-gric 47482 df-grlim 47520 df-grlic 47523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |