Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricgrlic Structured version   Visualization version   GIF version

Theorem gricgrlic 47990
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricgrlic ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))

Proof of Theorem gricgrlic
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 brgric 47892 . . 3 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0 4333 . . . 4 ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻))
3 uhgrimgrlim 47966 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻))
4 brgrilci 47977 . . . . . . . 8 (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺𝑙𝑔𝑟 𝐻)
53, 4syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
653expa 1118 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
76expcom 413 . . . . 5 (𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
87exlimiv 1930 . . . 4 (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
92, 8sylbi 217 . . 3 ((𝐺 GraphIso 𝐻) ≠ ∅ → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
101, 9sylbi 217 . 2 (𝐺𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
1110com12 32 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2933  c0 4313   class class class wbr 5124  (class class class)co 7410  UHGraphcuhgr 29040   GraphIso cgrim 47855  𝑔𝑟 cgric 47856   GraphLocIso cgrlim 47955  𝑙𝑔𝑟 cgrlic 47956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-1o 8485  df-map 8847  df-vtx 28982  df-iedg 28983  df-edg 29032  df-uhgr 29042  df-clnbgr 47800  df-isubgr 47841  df-grim 47858  df-gric 47861  df-grlim 47957  df-grlic 47960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator