Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricgrlic Structured version   Visualization version   GIF version

Theorem gricgrlic 48010
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricgrlic ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))

Proof of Theorem gricgrlic
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 brgric 47912 . . 3 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0 4316 . . . 4 ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻))
3 uhgrimgrlim 47986 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻))
4 brgrilci 47997 . . . . . . . 8 (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺𝑙𝑔𝑟 𝐻)
53, 4syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
653expa 1118 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
76expcom 413 . . . . 5 (𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
87exlimiv 1930 . . . 4 (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
92, 8sylbi 217 . . 3 ((𝐺 GraphIso 𝐻) ≠ ∅ → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
101, 9sylbi 217 . 2 (𝐺𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
1110com12 32 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2925  c0 4296   class class class wbr 5107  (class class class)co 7387  UHGraphcuhgr 28983   GraphIso cgrim 47875  𝑔𝑟 cgric 47876   GraphLocIso cgrlim 47975  𝑙𝑔𝑟 cgrlic 47976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-clnbgr 47820  df-isubgr 47861  df-grim 47878  df-gric 47881  df-grlim 47977  df-grlic 47980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator