Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricgrlic Structured version   Visualization version   GIF version

Theorem gricgrlic 47835
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricgrlic ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))

Proof of Theorem gricgrlic
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 brgric 47765 . . 3 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0 4376 . . . 4 ((𝐺 GraphIso 𝐻) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻))
3 uhgrimgrlim 47811 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝑖 ∈ (𝐺 GraphLocIso 𝐻))
4 brgrilci 47822 . . . . . . . 8 (𝑖 ∈ (𝐺 GraphLocIso 𝐻) → 𝐺𝑙𝑔𝑟 𝐻)
53, 4syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
653expa 1118 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑖 ∈ (𝐺 GraphIso 𝐻)) → 𝐺𝑙𝑔𝑟 𝐻)
76expcom 413 . . . . 5 (𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
87exlimiv 1929 . . . 4 (∃𝑖 𝑖 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
92, 8sylbi 217 . . 3 ((𝐺 GraphIso 𝐻) ≠ ∅ → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
101, 9sylbi 217 . 2 (𝐺𝑔𝑟 𝐻 → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺𝑙𝑔𝑟 𝐻))
1110com12 32 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺𝑔𝑟 𝐻𝐺𝑙𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wex 1777  wcel 2108  wne 2946  c0 4352   class class class wbr 5166  (class class class)co 7448  UHGraphcuhgr 29091   GraphIso cgrim 47745  𝑔𝑟 cgric 47746   GraphLocIso cgrlim 47800  𝑙𝑔𝑟 cgrlic 47801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-clnbgr 47693  df-isubgr 47733  df-grim 47748  df-gric 47751  df-grlim 47802  df-grlic 47805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator