![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr0 | Structured version Visualization version GIF version |
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
psr0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psr0.o | ⊢ 𝑂 = (0g‘𝑅) |
psr0.z | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
psr0 | ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrgrp.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrgrp.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | psrgrp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
4 | psr0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | psr0.o | . . 3 ⊢ 𝑂 = (0g‘𝑅) | |
6 | eqid 2735 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | eqid 2735 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
8 | 1, 2, 3, 4, 5, 6 | psr0cl 21990 | . . 3 ⊢ (𝜑 → (𝐷 × {𝑂}) ∈ (Base‘𝑆)) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | psr0lid 21991 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑂})(+g‘𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂})) |
10 | 1, 2, 3 | psrgrp 21994 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
11 | psr0.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
12 | 6, 7, 11 | grpid 19006 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ (𝐷 × {𝑂}) ∈ (Base‘𝑆)) → (((𝐷 × {𝑂})(+g‘𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}) ↔ 0 = (𝐷 × {𝑂}))) |
13 | 10, 8, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝐷 × {𝑂})(+g‘𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}) ↔ 0 = (𝐷 × {𝑂}))) |
14 | 9, 13 | mpbid 232 | 1 ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {crab 3433 {csn 4631 × cxp 5687 ◡ccnv 5688 “ cima 5692 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 ℕcn 12264 ℕ0cn0 12524 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Grpcgrp 18964 mPwSer cmps 21942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-psr 21947 |
This theorem is referenced by: psrneg 21997 mpl0 22044 |
Copyright terms: Public domain | W3C validator |