MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr0 Structured version   Visualization version   GIF version

Theorem psr0 21895
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psr0.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr0.o 𝑂 = (0g𝑅)
psr0.z 0 = (0g𝑆)
Assertion
Ref Expression
psr0 (𝜑0 = (𝐷 × {𝑂}))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑂(𝑓)   𝑉(𝑓)   0 (𝑓)

Proof of Theorem psr0
StepHypRef Expression
1 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrgrp.i . . 3 (𝜑𝐼𝑉)
3 psrgrp.r . . 3 (𝜑𝑅 ∈ Grp)
4 psr0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr0.o . . 3 𝑂 = (0g𝑅)
6 eqid 2731 . . 3 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2731 . . 3 (+g𝑆) = (+g𝑆)
81, 2, 3, 4, 5, 6psr0cl 21889 . . 3 (𝜑 → (𝐷 × {𝑂}) ∈ (Base‘𝑆))
91, 2, 3, 4, 5, 6, 7, 8psr0lid 21890 . 2 (𝜑 → ((𝐷 × {𝑂})(+g𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}))
101, 2, 3psrgrp 21893 . . 3 (𝜑𝑆 ∈ Grp)
11 psr0.z . . . 4 0 = (0g𝑆)
126, 7, 11grpid 18888 . . 3 ((𝑆 ∈ Grp ∧ (𝐷 × {𝑂}) ∈ (Base‘𝑆)) → (((𝐷 × {𝑂})(+g𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}) ↔ 0 = (𝐷 × {𝑂})))
1310, 8, 12syl2anc 584 . 2 (𝜑 → (((𝐷 × {𝑂})(+g𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}) ↔ 0 = (𝐷 × {𝑂})))
149, 13mpbid 232 1 (𝜑0 = (𝐷 × {𝑂}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {crab 3395  {csn 4573   × cxp 5612  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cn 12125  0cn0 12381  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846   mPwSer cmps 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-psr 21846
This theorem is referenced by:  psrneg  21896  mpl0  21943  psdmvr  22084
  Copyright terms: Public domain W3C validator