MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr0 Structured version   Visualization version   GIF version

Theorem psr0 21831
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psr0.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr0.o 𝑂 = (0g𝑅)
psr0.z 0 = (0g𝑆)
Assertion
Ref Expression
psr0 (𝜑0 = (𝐷 × {𝑂}))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑂(𝑓)   𝑉(𝑓)   0 (𝑓)

Proof of Theorem psr0
StepHypRef Expression
1 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrgrp.i . . 3 (𝜑𝐼𝑉)
3 psrgrp.r . . 3 (𝜑𝑅 ∈ Grp)
4 psr0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr0.o . . 3 𝑂 = (0g𝑅)
6 eqid 2724 . . 3 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2724 . . 3 (+g𝑆) = (+g𝑆)
81, 2, 3, 4, 5, 6psr0cl 21825 . . 3 (𝜑 → (𝐷 × {𝑂}) ∈ (Base‘𝑆))
91, 2, 3, 4, 5, 6, 7, 8psr0lid 21826 . 2 (𝜑 → ((𝐷 × {𝑂})(+g𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}))
101, 2, 3psrgrp 21829 . . 3 (𝜑𝑆 ∈ Grp)
11 psr0.z . . . 4 0 = (0g𝑆)
126, 7, 11grpid 18897 . . 3 ((𝑆 ∈ Grp ∧ (𝐷 × {𝑂}) ∈ (Base‘𝑆)) → (((𝐷 × {𝑂})(+g𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}) ↔ 0 = (𝐷 × {𝑂})))
1310, 8, 12syl2anc 583 . 2 (𝜑 → (((𝐷 × {𝑂})(+g𝑆)(𝐷 × {𝑂})) = (𝐷 × {𝑂}) ↔ 0 = (𝐷 × {𝑂})))
149, 13mpbid 231 1 (𝜑0 = (𝐷 × {𝑂}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {crab 3424  {csn 4621   × cxp 5665  ccnv 5666  cima 5670  cfv 6534  (class class class)co 7402  m cmap 8817  Fincfn 8936  cn 12210  0cn0 12470  Basecbs 17145  +gcplusg 17198  0gc0g 17386  Grpcgrp 18855   mPwSer cmps 21768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-sup 9434  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-mulr 17212  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-hom 17222  df-cco 17223  df-0g 17388  df-prds 17394  df-pws 17396  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-psr 21773
This theorem is referenced by:  psrneg  21832  mpl0  21877
  Copyright terms: Public domain W3C validator