Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erng0g Structured version   Visualization version   GIF version

Theorem erng0g 39008
Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
erng0g.b 𝐵 = (Base‘𝐾)
erng0g.h 𝐻 = (LHyp‘𝐾)
erng0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erng0g.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erng0g.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erng0g.z 0 = (0g𝐷)
Assertion
Ref Expression
erng0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝑂(𝑓)   0 (𝑓)

Proof of Theorem erng0g
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erng0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 erng0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 eqid 2738 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 erng0g.d . . . . 5 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2738 . . . . 5 (+g𝐷) = (+g𝐷)
61, 2, 3, 4, 5erngfplus 38816 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
76oveqd 7292 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
8 erng0g.b . . . . 5 𝐵 = (Base‘𝐾)
9 erng0g.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
108, 1, 2, 3, 9tendo0cl 38804 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
11 eqid 2738 . . . . 5 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
128, 1, 2, 3, 9, 11tendo0pl 38805 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
1310, 12mpdan 684 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
147, 13eqtrd 2778 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = 𝑂)
151, 4eringring 39006 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
16 ringgrp 19788 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1715, 16syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
18 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
191, 2, 3, 4, 18erngbase 38815 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊))
2010, 19eleqtrrd 2842 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ (Base‘𝐷))
21 erng0g.z . . . 4 0 = (0g𝐷)
2218, 5, 21grpid 18615 . . 3 ((𝐷 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐷)) → ((𝑂(+g𝐷)𝑂) = 𝑂0 = 𝑂))
2317, 20, 22syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑂(+g𝐷)𝑂) = 𝑂0 = 𝑂))
2414, 23mpbid 231 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cmpt 5157   I cid 5488  cres 5591  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  Ringcrg 19783  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766  EDRingcedring 38767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ring 19785  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769  df-edring 38771
This theorem is referenced by:  erng1r  39009  dvalveclem  39039  tendoinvcl  39118  tendolinv  39119  tendorinv  39120  cdlemn4  39212
  Copyright terms: Public domain W3C validator