Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erng0g | Structured version Visualization version GIF version |
Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
erng0g.b | ⊢ 𝐵 = (Base‘𝐾) |
erng0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erng0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erng0g.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng0g.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
erng0g.z | ⊢ 0 = (0g‘𝐷) |
Ref | Expression |
---|---|
erng0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erng0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | eqid 2738 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | erng0g.d | . . . . 5 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngfplus 38802 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
7 | 6 | oveqd 7285 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘𝐷)𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
8 | erng0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
9 | erng0g.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
10 | 8, 1, 2, 3, 9 | tendo0cl 38790 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
11 | eqid 2738 | . . . . 5 ⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
12 | 8, 1, 2, 3, 9, 11 | tendo0pl 38791 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
13 | 10, 12 | mpdan 684 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
14 | 7, 13 | eqtrd 2778 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘𝐷)𝑂) = 𝑂) |
15 | 1, 4 | eringring 38992 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |
16 | ringgrp 19776 | . . . 4 ⊢ (𝐷 ∈ Ring → 𝐷 ∈ Grp) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
18 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
19 | 1, 2, 3, 4, 18 | erngbase 38801 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊)) |
20 | 10, 19 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ (Base‘𝐷)) |
21 | erng0g.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
22 | 18, 5, 21 | grpid 18603 | . . 3 ⊢ ((𝐷 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐷)) → ((𝑂(+g‘𝐷)𝑂) = 𝑂 ↔ 0 = 𝑂)) |
23 | 17, 20, 22 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑂(+g‘𝐷)𝑂) = 𝑂 ↔ 0 = 𝑂)) |
24 | 14, 23 | mpbid 231 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 I cid 5484 ↾ cres 5587 ∘ ccom 5589 ‘cfv 6427 (class class class)co 7268 ∈ cmpo 7270 Basecbs 16900 +gcplusg 16950 0gc0g 17138 Grpcgrp 18565 Ringcrg 19771 HLchlt 37350 LHypclh 37984 LTrncltrn 38101 TEndoctendo 38752 EDRingcedring 38753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-riotaBAD 36953 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-iin 4928 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-undef 8077 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-map 8605 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-3 12025 df-n0 12222 df-z 12308 df-uz 12571 df-fz 13228 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-mulr 16964 df-0g 17140 df-proset 18001 df-poset 18019 df-plt 18036 df-lub 18052 df-glb 18053 df-join 18054 df-meet 18055 df-p0 18131 df-p1 18132 df-lat 18138 df-clat 18205 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-grp 18568 df-mgp 19709 df-ring 19773 df-oposet 37176 df-ol 37178 df-oml 37179 df-covers 37266 df-ats 37267 df-atl 37298 df-cvlat 37322 df-hlat 37351 df-llines 37498 df-lplanes 37499 df-lvols 37500 df-lines 37501 df-psubsp 37503 df-pmap 37504 df-padd 37796 df-lhyp 37988 df-laut 37989 df-ldil 38104 df-ltrn 38105 df-trl 38159 df-tendo 38755 df-edring 38757 |
This theorem is referenced by: erng1r 38995 dvalveclem 39025 tendoinvcl 39104 tendolinv 39105 tendorinv 39106 cdlemn4 39198 |
Copyright terms: Public domain | W3C validator |