| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erng0g | Structured version Visualization version GIF version | ||
| Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
| Ref | Expression |
|---|---|
| erng0g.b | ⊢ 𝐵 = (Base‘𝐾) |
| erng0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| erng0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| erng0g.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
| erng0g.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| erng0g.z | ⊢ 0 = (0g‘𝐷) |
| Ref | Expression |
|---|---|
| erng0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erng0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | erng0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | erng0g.d | . . . . 5 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | erngfplus 40785 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
| 7 | 6 | oveqd 7366 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘𝐷)𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
| 8 | erng0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | erng0g.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 10 | 8, 1, 2, 3, 9 | tendo0cl 40773 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 12 | 8, 1, 2, 3, 9, 11 | tendo0pl 40774 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
| 13 | 10, 12 | mpdan 687 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
| 14 | 7, 13 | eqtrd 2764 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘𝐷)𝑂) = 𝑂) |
| 15 | 1, 4 | eringring 40975 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |
| 16 | ringgrp 20123 | . . . 4 ⊢ (𝐷 ∈ Ring → 𝐷 ∈ Grp) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| 18 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 19 | 1, 2, 3, 4, 18 | erngbase 40784 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊)) |
| 20 | 10, 19 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ (Base‘𝐷)) |
| 21 | erng0g.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 22 | 18, 5, 21 | grpid 18854 | . . 3 ⊢ ((𝐷 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐷)) → ((𝑂(+g‘𝐷)𝑂) = 𝑂 ↔ 0 = 𝑂)) |
| 23 | 17, 20, 22 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑂(+g‘𝐷)𝑂) = 𝑂 ↔ 0 = 𝑂)) |
| 24 | 14, 23 | mpbid 232 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 I cid 5513 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 Ringcrg 20118 HLchlt 39333 LHypclh 39967 LTrncltrn 40084 TEndoctendo 40735 EDRingcedring 40736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-riotaBAD 38936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-undef 8206 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-mgp 20026 df-ring 20120 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 df-edring 40740 |
| This theorem is referenced by: erng1r 40978 dvalveclem 41008 tendoinvcl 41087 tendolinv 41088 tendorinv 41089 cdlemn4 41181 |
| Copyright terms: Public domain | W3C validator |