Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erng0g Structured version   Visualization version   GIF version

Theorem erng0g 40995
Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
erng0g.b 𝐵 = (Base‘𝐾)
erng0g.h 𝐻 = (LHyp‘𝐾)
erng0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erng0g.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erng0g.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erng0g.z 0 = (0g𝐷)
Assertion
Ref Expression
erng0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝑂(𝑓)   0 (𝑓)

Proof of Theorem erng0g
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erng0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 erng0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 eqid 2730 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 erng0g.d . . . . 5 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2730 . . . . 5 (+g𝐷) = (+g𝐷)
61, 2, 3, 4, 5erngfplus 40803 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
76oveqd 7407 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
8 erng0g.b . . . . 5 𝐵 = (Base‘𝐾)
9 erng0g.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
108, 1, 2, 3, 9tendo0cl 40791 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
11 eqid 2730 . . . . 5 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
128, 1, 2, 3, 9, 11tendo0pl 40792 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
1310, 12mpdan 687 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
147, 13eqtrd 2765 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = 𝑂)
151, 4eringring 40993 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
16 ringgrp 20154 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1715, 16syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
18 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
191, 2, 3, 4, 18erngbase 40802 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊))
2010, 19eleqtrrd 2832 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ (Base‘𝐷))
21 erng0g.z . . . 4 0 = (0g𝐷)
2218, 5, 21grpid 18914 . . 3 ((𝐷 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐷)) → ((𝑂(+g𝐷)𝑂) = 𝑂0 = 𝑂))
2317, 20, 22syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑂(+g𝐷)𝑂) = 𝑂0 = 𝑂))
2414, 23mpbid 232 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cmpt 5191   I cid 5535  cres 5643  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  Ringcrg 20149  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  EDRingcedring 40754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-mgp 20057  df-ring 20151  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758
This theorem is referenced by:  erng1r  40996  dvalveclem  41026  tendoinvcl  41105  tendolinv  41106  tendorinv  41107  cdlemn4  41199
  Copyright terms: Public domain W3C validator