Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erng0g Structured version   Visualization version   GIF version

Theorem erng0g 37157
Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
erng0g.b 𝐵 = (Base‘𝐾)
erng0g.h 𝐻 = (LHyp‘𝐾)
erng0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erng0g.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erng0g.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erng0g.z 0 = (0g𝐷)
Assertion
Ref Expression
erng0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝑂(𝑓)   0 (𝑓)

Proof of Theorem erng0g
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erng0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 erng0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 eqid 2778 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 erng0g.d . . . . 5 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2778 . . . . 5 (+g𝐷) = (+g𝐷)
61, 2, 3, 4, 5erngfplus 36965 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
76oveqd 6941 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
8 erng0g.b . . . . 5 𝐵 = (Base‘𝐾)
9 erng0g.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
108, 1, 2, 3, 9tendo0cl 36953 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
11 eqid 2778 . . . . 5 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
128, 1, 2, 3, 9, 11tendo0pl 36954 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
1310, 12mpdan 677 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
147, 13eqtrd 2814 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = 𝑂)
151, 4eringring 37155 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
16 ringgrp 18950 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1715, 16syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
18 eqid 2778 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
191, 2, 3, 4, 18erngbase 36964 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊))
2010, 19eleqtrrd 2862 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ (Base‘𝐷))
21 erng0g.z . . . 4 0 = (0g𝐷)
2218, 5, 21grpid 17855 . . 3 ((𝐷 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐷)) → ((𝑂(+g𝐷)𝑂) = 𝑂0 = 𝑂))
2317, 20, 22syl2anc 579 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑂(+g𝐷)𝑂) = 𝑂0 = 𝑂))
2414, 23mpbid 224 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  cmpt 4967   I cid 5262  cres 5359  ccom 5361  cfv 6137  (class class class)co 6924  cmpt2 6926  Basecbs 16266  +gcplusg 16349  0gc0g 16497  Grpcgrp 17820  Ringcrg 18945  HLchlt 35513  LHypclh 36147  LTrncltrn 36264  TEndoctendo 36915  EDRingcedring 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-riotaBAD 35116
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-undef 7683  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-plusg 16362  df-mulr 16363  df-0g 16499  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-p1 17437  df-lat 17443  df-clat 17505  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-mgp 18888  df-ring 18947  df-oposet 35339  df-ol 35341  df-oml 35342  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514  df-llines 35661  df-lplanes 35662  df-lvols 35663  df-lines 35664  df-psubsp 35666  df-pmap 35667  df-padd 35959  df-lhyp 36151  df-laut 36152  df-ldil 36267  df-ltrn 36268  df-trl 36322  df-tendo 36918  df-edring 36920
This theorem is referenced by:  erng1r  37158  dvalveclem  37188  tendoinvcl  37267  tendolinv  37268  tendorinv  37269  cdlemn4  37361
  Copyright terms: Public domain W3C validator