| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version | ||
| Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld0 | ⊢ 0 = (0g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 11325 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | cnring 21332 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 3 | ringgrp 20158 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 5 | 0cn 11142 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | cnfldbas 21300 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21302 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 9 | 6, 7, 8 | grpid 18889 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
| 10 | 4, 5, 9 | mp2an 692 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
| 11 | 1, 10 | mpbi 230 | . 2 ⊢ (0g‘ℂfld) = 0 |
| 12 | 11 | eqcomi 2738 | 1 ⊢ 0 = (0g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 + caddc 11047 0gc0g 17378 Grpcgrp 18847 Ringcrg 20153 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-cmn 19696 df-mgp 20061 df-ring 20155 df-cring 20156 df-cnfld 21297 |
| This theorem is referenced by: cnfldneg 21337 cndrng 21340 cndrngOLD 21341 cnflddiv 21342 cnflddivOLD 21343 cnfldinv 21344 cnfldmulg 21345 cnsubmlem 21356 cnsubdrglem 21360 absabv 21366 qsssubdrg 21368 cnmgpabl 21370 cnmsubglem 21372 gzrngunitlem 21374 gzrngunit 21375 gsumfsum 21376 expmhm 21378 nn0srg 21379 rge0srg 21380 zring0 21400 zringunit 21408 expghm 21417 psgninv 21524 zrhpsgnmhm 21526 re0g 21554 regsumsupp 21564 mhpsclcl 22067 mhpvarcl 22068 mhpmulcl 22069 cnfldnm 24699 clm0 25005 cphsubrglem 25110 cphreccllem 25111 tdeglem1 25996 tdeglem3 25997 tdeglem4 25998 plypf1 26150 dvply2g 26225 dvply2gOLD 26226 tayl0 26302 taylpfval 26305 efsubm 26493 jensenlem2 26931 jensen 26932 amgmlem 26933 amgm 26934 dchrghm 27200 dchrabs 27204 sum2dchr 27218 lgseisenlem4 27322 qrng0 27565 1fldgenq 33288 xrge0slmod 33312 ccfldextdgrr 33660 constrelextdg2 33730 constrsdrg 33758 2sqr3minply 33763 cos9thpiminply 33771 zringnm 33941 rezh 33952 mhphflem 42577 fsumcnsrcl 43148 cnsrplycl 43149 rngunsnply 43151 proot1ex 43178 deg1mhm 43182 2zrng0 48225 amgmwlem 49784 amgmlemALT 49785 |
| Copyright terms: Public domain | W3C validator |