| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version | ||
| Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld0 | ⊢ 0 = (0g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 11402 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | cnring 21338 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 3 | ringgrp 20183 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 5 | 0cn 11219 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | cnfldbas 21304 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21306 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | eqid 2734 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 9 | 6, 7, 8 | grpid 18943 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
| 10 | 4, 5, 9 | mp2an 692 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
| 11 | 1, 10 | mpbi 230 | . 2 ⊢ (0g‘ℂfld) = 0 |
| 12 | 11 | eqcomi 2743 | 1 ⊢ 0 = (0g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 0cc0 11121 + caddc 11124 0gc0g 17438 Grpcgrp 18901 Ringcrg 20178 ℂfldccnfld 21300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-addf 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-plusg 17269 df-mulr 17270 df-starv 17271 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18904 df-cmn 19748 df-mgp 20086 df-ring 20180 df-cring 20181 df-cnfld 21301 |
| This theorem is referenced by: cnfldneg 21343 cndrng 21346 cndrngOLD 21347 cnflddiv 21348 cnflddivOLD 21349 cnfldinv 21350 cnfldmulg 21351 cnsubmlem 21367 cnsubdrglem 21371 absabv 21377 qsssubdrg 21379 cnmgpabl 21381 cnmsubglem 21383 gzrngunitlem 21385 gzrngunit 21386 gsumfsum 21387 expmhm 21389 nn0srg 21390 rge0srg 21391 zring0 21404 zringunit 21412 expghm 21421 psgninv 21527 zrhpsgnmhm 21529 re0g 21557 regsumsupp 21567 mhpsclcl 22070 mhpvarcl 22071 mhpmulcl 22072 cnfldnm 24702 clm0 25008 cphsubrglem 25114 cphreccllem 25115 tdeglem1 26000 tdeglem3 26001 tdeglem4 26002 plypf1 26154 dvply2g 26229 dvply2gOLD 26230 tayl0 26306 taylpfval 26309 efsubm 26496 jensenlem2 26934 jensen 26935 amgmlem 26936 amgm 26937 dchrghm 27203 dchrabs 27207 sum2dchr 27221 lgseisenlem4 27325 qrng0 27568 1fldgenq 33234 xrge0slmod 33281 ccfldextdgrr 33629 constrelextdg2 33697 constrsdrg 33725 2sqr3minply 33730 zringnm 33897 rezh 33908 mhphflem 42544 fsumcnsrcl 43115 cnsrplycl 43116 rngunsnply 43118 proot1ex 43145 deg1mhm 43149 2zrng0 48105 amgmwlem 49386 amgmlemALT 49387 |
| Copyright terms: Public domain | W3C validator |