| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version | ||
| Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld0 | ⊢ 0 = (0g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 11291 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | cnring 21297 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 3 | ringgrp 20123 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 5 | 0cn 11107 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | cnfldbas 21265 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21267 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 9 | 6, 7, 8 | grpid 18854 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
| 10 | 4, 5, 9 | mp2an 692 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
| 11 | 1, 10 | mpbi 230 | . 2 ⊢ (0g‘ℂfld) = 0 |
| 12 | 11 | eqcomi 2738 | 1 ⊢ 0 = (0g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 + caddc 11012 0gc0g 17343 Grpcgrp 18812 Ringcrg 20118 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-cmn 19661 df-mgp 20026 df-ring 20120 df-cring 20121 df-cnfld 21262 |
| This theorem is referenced by: cnfldneg 21302 cndrng 21305 cndrngOLD 21306 cnflddiv 21307 cnflddivOLD 21308 cnfldinv 21309 cnfldmulg 21310 cnsubmlem 21321 cnsubdrglem 21325 absabv 21331 qsssubdrg 21333 cnmgpabl 21335 cnmsubglem 21337 gzrngunitlem 21339 gzrngunit 21340 gsumfsum 21341 expmhm 21343 nn0srg 21344 rge0srg 21345 zring0 21365 zringunit 21373 expghm 21382 psgninv 21489 zrhpsgnmhm 21491 re0g 21519 regsumsupp 21529 mhpsclcl 22032 mhpvarcl 22033 mhpmulcl 22034 cnfldnm 24664 clm0 24970 cphsubrglem 25075 cphreccllem 25076 tdeglem1 25961 tdeglem3 25962 tdeglem4 25963 plypf1 26115 dvply2g 26190 dvply2gOLD 26191 tayl0 26267 taylpfval 26270 efsubm 26458 jensenlem2 26896 jensen 26897 amgmlem 26898 amgm 26899 dchrghm 27165 dchrabs 27169 sum2dchr 27183 lgseisenlem4 27287 qrng0 27530 1fldgenq 33261 xrge0slmod 33285 ccfldextdgrr 33639 constrelextdg2 33714 constrsdrg 33742 2sqr3minply 33747 cos9thpiminply 33755 zringnm 33925 rezh 33936 mhphflem 42573 fsumcnsrcl 43143 cnsrplycl 43144 rngunsnply 43146 proot1ex 43173 deg1mhm 43177 2zrng0 48232 amgmwlem 49791 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |