Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version |
Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld0 | ⊢ 0 = (0g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id 11080 | . . 3 ⊢ (0 + 0) = 0 | |
2 | cnring 20532 | . . . . 5 ⊢ ℂfld ∈ Ring | |
3 | ringgrp 19703 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
5 | 0cn 10898 | . . . 4 ⊢ 0 ∈ ℂ | |
6 | cnfldbas 20514 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
7 | cnfldadd 20515 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
8 | eqid 2738 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
9 | 6, 7, 8 | grpid 18530 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
10 | 4, 5, 9 | mp2an 688 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
11 | 1, 10 | mpbi 229 | . 2 ⊢ (0g‘ℂfld) = 0 |
12 | 11 | eqcomi 2747 | 1 ⊢ 0 = (0g‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 0gc0g 17067 Grpcgrp 18492 Ringcrg 19698 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-cmn 19303 df-mgp 19636 df-ring 19700 df-cring 19701 df-cnfld 20511 |
This theorem is referenced by: cnfldneg 20536 cndrng 20539 cnflddiv 20540 cnfldinv 20541 cnfldmulg 20542 cnsubmlem 20558 cnsubdrglem 20561 absabv 20567 qsssubdrg 20569 cnmgpabl 20571 cnmsubglem 20573 gzrngunitlem 20575 gzrngunit 20576 gsumfsum 20577 expmhm 20579 nn0srg 20580 rge0srg 20581 zring0 20592 zringunit 20600 expghm 20609 psgninv 20699 zrhpsgnmhm 20701 re0g 20729 regsumsupp 20739 mhpsclcl 21247 mhpvarcl 21248 mhpmulcl 21249 cnfldnm 23848 clm0 24141 cphsubrglem 24246 cphreccllem 24247 tdeglem1 25125 tdeglem1OLD 25126 tdeglem3 25127 tdeglem3OLD 25128 tdeglem4 25129 tdeglem4OLD 25130 plypf1 25278 dvply2g 25350 tayl0 25426 taylpfval 25429 efsubm 25612 jensenlem2 26042 jensen 26043 amgmlem 26044 amgm 26045 dchrghm 26309 dchrabs 26313 sum2dchr 26327 lgseisenlem4 26431 qrng0 26674 xrge0slmod 31450 ccfldextdgrr 31644 zringnm 31810 rezh 31821 mhphflem 40207 fsumcnsrcl 40907 cnsrplycl 40908 rngunsnply 40914 proot1ex 40942 deg1mhm 40948 2zrng0 45384 amgmwlem 46392 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |