|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version | ||
| Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| cnfld0 | ⊢ 0 = (0g‘ℂfld) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 00id 11437 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | cnring 21404 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 3 | ringgrp 20236 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp | 
| 5 | 0cn 11254 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | cnfldbas 21369 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21371 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 9 | 6, 7, 8 | grpid 18994 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) | 
| 10 | 4, 5, 9 | mp2an 692 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) | 
| 11 | 1, 10 | mpbi 230 | . 2 ⊢ (0g‘ℂfld) = 0 | 
| 12 | 11 | eqcomi 2745 | 1 ⊢ 0 = (0g‘ℂfld) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 0cc0 11156 + caddc 11159 0gc0g 17485 Grpcgrp 18952 Ringcrg 20231 ℂfldccnfld 21365 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-cmn 19801 df-mgp 20139 df-ring 20233 df-cring 20234 df-cnfld 21366 | 
| This theorem is referenced by: cnfldneg 21409 cndrng 21412 cndrngOLD 21413 cnflddiv 21414 cnflddivOLD 21415 cnfldinv 21416 cnfldmulg 21417 cnsubmlem 21433 cnsubdrglem 21437 absabv 21443 qsssubdrg 21445 cnmgpabl 21447 cnmsubglem 21449 gzrngunitlem 21451 gzrngunit 21452 gsumfsum 21453 expmhm 21455 nn0srg 21456 rge0srg 21457 zring0 21470 zringunit 21478 expghm 21487 psgninv 21601 zrhpsgnmhm 21603 re0g 21631 regsumsupp 21641 mhpsclcl 22152 mhpvarcl 22153 mhpmulcl 22154 cnfldnm 24800 clm0 25106 cphsubrglem 25212 cphreccllem 25213 tdeglem1 26098 tdeglem3 26099 tdeglem4 26100 plypf1 26252 dvply2g 26327 dvply2gOLD 26328 tayl0 26404 taylpfval 26407 efsubm 26594 jensenlem2 27032 jensen 27033 amgmlem 27034 amgm 27035 dchrghm 27301 dchrabs 27305 sum2dchr 27319 lgseisenlem4 27423 qrng0 27666 1fldgenq 33325 xrge0slmod 33377 ccfldextdgrr 33723 constrelextdg2 33789 2sqr3minply 33792 zringnm 33958 rezh 33971 mhphflem 42611 fsumcnsrcl 43183 cnsrplycl 43184 rngunsnply 43186 proot1ex 43213 deg1mhm 43217 2zrng0 48165 amgmwlem 49376 amgmlemALT 49377 | 
| Copyright terms: Public domain | W3C validator |