| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version | ||
| Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld0 | ⊢ 0 = (0g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 11349 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | cnring 21302 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 3 | ringgrp 20147 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 5 | 0cn 11166 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | cnfldbas 21268 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21270 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 9 | 6, 7, 8 | grpid 18907 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
| 10 | 4, 5, 9 | mp2an 692 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
| 11 | 1, 10 | mpbi 230 | . 2 ⊢ (0g‘ℂfld) = 0 |
| 12 | 11 | eqcomi 2738 | 1 ⊢ 0 = (0g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 + caddc 11071 0gc0g 17402 Grpcgrp 18865 Ringcrg 20142 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-cmn 19712 df-mgp 20050 df-ring 20144 df-cring 20145 df-cnfld 21265 |
| This theorem is referenced by: cnfldneg 21307 cndrng 21310 cndrngOLD 21311 cnflddiv 21312 cnflddivOLD 21313 cnfldinv 21314 cnfldmulg 21315 cnsubmlem 21331 cnsubdrglem 21335 absabv 21341 qsssubdrg 21343 cnmgpabl 21345 cnmsubglem 21347 gzrngunitlem 21349 gzrngunit 21350 gsumfsum 21351 expmhm 21353 nn0srg 21354 rge0srg 21355 zring0 21368 zringunit 21376 expghm 21385 psgninv 21491 zrhpsgnmhm 21493 re0g 21521 regsumsupp 21531 mhpsclcl 22034 mhpvarcl 22035 mhpmulcl 22036 cnfldnm 24666 clm0 24972 cphsubrglem 25077 cphreccllem 25078 tdeglem1 25963 tdeglem3 25964 tdeglem4 25965 plypf1 26117 dvply2g 26192 dvply2gOLD 26193 tayl0 26269 taylpfval 26272 efsubm 26460 jensenlem2 26898 jensen 26899 amgmlem 26900 amgm 26901 dchrghm 27167 dchrabs 27171 sum2dchr 27185 lgseisenlem4 27289 qrng0 27532 1fldgenq 33272 xrge0slmod 33319 ccfldextdgrr 33667 constrelextdg2 33737 constrsdrg 33765 2sqr3minply 33770 cos9thpiminply 33778 zringnm 33948 rezh 33959 mhphflem 42584 fsumcnsrcl 43155 cnsrplycl 43156 rngunsnply 43158 proot1ex 43185 deg1mhm 43189 2zrng0 48232 amgmwlem 49791 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |