| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version | ||
| Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfld0 | ⊢ 0 = (0g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 11415 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | cnring 21358 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 3 | ringgrp 20203 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 5 | 0cn 11232 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | cnfldbas 21324 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21326 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 9 | 6, 7, 8 | grpid 18963 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
| 10 | 4, 5, 9 | mp2an 692 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
| 11 | 1, 10 | mpbi 230 | . 2 ⊢ (0g‘ℂfld) = 0 |
| 12 | 11 | eqcomi 2745 | 1 ⊢ 0 = (0g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 + caddc 11137 0gc0g 17458 Grpcgrp 18921 Ringcrg 20198 ℂfldccnfld 21320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-cmn 19768 df-mgp 20106 df-ring 20200 df-cring 20201 df-cnfld 21321 |
| This theorem is referenced by: cnfldneg 21363 cndrng 21366 cndrngOLD 21367 cnflddiv 21368 cnflddivOLD 21369 cnfldinv 21370 cnfldmulg 21371 cnsubmlem 21387 cnsubdrglem 21391 absabv 21397 qsssubdrg 21399 cnmgpabl 21401 cnmsubglem 21403 gzrngunitlem 21405 gzrngunit 21406 gsumfsum 21407 expmhm 21409 nn0srg 21410 rge0srg 21411 zring0 21424 zringunit 21432 expghm 21441 psgninv 21547 zrhpsgnmhm 21549 re0g 21577 regsumsupp 21587 mhpsclcl 22090 mhpvarcl 22091 mhpmulcl 22092 cnfldnm 24722 clm0 25028 cphsubrglem 25134 cphreccllem 25135 tdeglem1 26020 tdeglem3 26021 tdeglem4 26022 plypf1 26174 dvply2g 26249 dvply2gOLD 26250 tayl0 26326 taylpfval 26329 efsubm 26517 jensenlem2 26955 jensen 26956 amgmlem 26957 amgm 26958 dchrghm 27224 dchrabs 27228 sum2dchr 27242 lgseisenlem4 27346 qrng0 27589 1fldgenq 33321 xrge0slmod 33368 ccfldextdgrr 33718 constrelextdg2 33786 constrsdrg 33814 2sqr3minply 33819 cos9thpiminply 33827 zringnm 33994 rezh 34005 mhphflem 42586 fsumcnsrcl 43157 cnsrplycl 43158 rngunsnply 43160 proot1ex 43187 deg1mhm 43191 2zrng0 48186 amgmwlem 49633 amgmlemALT 49634 |
| Copyright terms: Public domain | W3C validator |