![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual0v | Structured version Visualization version GIF version |
Description: The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
Ref | Expression |
---|---|
ldualv0.v | β’ π = (Baseβπ) |
ldualv0.r | β’ π = (Scalarβπ) |
ldualv0.z | β’ 0 = (0gβπ ) |
ldualv0.d | β’ π· = (LDualβπ) |
ldualv0.o | β’ π = (0gβπ·) |
ldualv0.w | β’ (π β π β LMod) |
Ref | Expression |
---|---|
ldual0v | β’ (π β π = (π Γ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (LFnlβπ) = (LFnlβπ) | |
2 | ldualv0.r | . . . 4 β’ π = (Scalarβπ) | |
3 | eqid 2731 | . . . 4 β’ (+gβπ ) = (+gβπ ) | |
4 | ldualv0.d | . . . 4 β’ π· = (LDualβπ) | |
5 | eqid 2731 | . . . 4 β’ (+gβπ·) = (+gβπ·) | |
6 | ldualv0.w | . . . 4 β’ (π β π β LMod) | |
7 | ldualv0.z | . . . . . 6 β’ 0 = (0gβπ ) | |
8 | ldualv0.v | . . . . . 6 β’ π = (Baseβπ) | |
9 | 2, 7, 8, 1 | lfl0f 38405 | . . . . 5 β’ (π β LMod β (π Γ { 0 }) β (LFnlβπ)) |
10 | 6, 9 | syl 17 | . . . 4 β’ (π β (π Γ { 0 }) β (LFnlβπ)) |
11 | 1, 2, 3, 4, 5, 6, 10, 10 | ldualvadd 38465 | . . 3 β’ (π β ((π Γ { 0 })(+gβπ·)(π Γ { 0 })) = ((π Γ { 0 }) βf (+gβπ )(π Γ { 0 }))) |
12 | 8, 2, 3, 7, 1, 6, 10 | lfladd0l 38410 | . . 3 β’ (π β ((π Γ { 0 }) βf (+gβπ )(π Γ { 0 })) = (π Γ { 0 })) |
13 | 11, 12 | eqtrd 2771 | . 2 β’ (π β ((π Γ { 0 })(+gβπ·)(π Γ { 0 })) = (π Γ { 0 })) |
14 | 4, 6 | ldualgrp 38482 | . . 3 β’ (π β π· β Grp) |
15 | eqid 2731 | . . . 4 β’ (Baseβπ·) = (Baseβπ·) | |
16 | 1, 4, 15, 6, 10 | ldualelvbase 38463 | . . 3 β’ (π β (π Γ { 0 }) β (Baseβπ·)) |
17 | ldualv0.o | . . . 4 β’ π = (0gβπ·) | |
18 | 15, 5, 17 | grpid 18903 | . . 3 β’ ((π· β Grp β§ (π Γ { 0 }) β (Baseβπ·)) β (((π Γ { 0 })(+gβπ·)(π Γ { 0 })) = (π Γ { 0 }) β π = (π Γ { 0 }))) |
19 | 14, 16, 18 | syl2anc 583 | . 2 β’ (π β (((π Γ { 0 })(+gβπ·)(π Γ { 0 })) = (π Γ { 0 }) β π = (π Γ { 0 }))) |
20 | 13, 19 | mpbid 231 | 1 β’ (π β π = (π Γ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1540 β wcel 2105 {csn 4628 Γ cxp 5674 βcfv 6543 (class class class)co 7412 βf cof 7672 Basecbs 17151 +gcplusg 17204 Scalarcsca 17207 0gc0g 17392 Grpcgrp 18861 LModclmod 20702 LFnlclfn 38393 LDualcld 38459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-sca 17220 df-vsca 17221 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-lmod 20704 df-lfl 38394 df-ldual 38460 |
This theorem is referenced by: ldual0vcl 38487 lkr0f2 38497 lduallkr3 38498 lclkrlem1 40843 lclkrlem2j 40853 lcd0v 40948 lcd0v2 40949 |
Copyright terms: Public domain | W3C validator |