![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual0v | Structured version Visualization version GIF version |
Description: The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
Ref | Expression |
---|---|
ldualv0.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualv0.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualv0.z | ⊢ 0 = (0g‘𝑅) |
ldualv0.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualv0.o | ⊢ 𝑂 = (0g‘𝐷) |
ldualv0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
ldual0v | ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
2 | ldualv0.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | eqid 2726 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | ldualv0.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
5 | eqid 2726 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
6 | ldualv0.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | ldualv0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
8 | ldualv0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
9 | 2, 7, 8, 1 | lfl0f 38767 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
11 | 1, 2, 3, 4, 5, 6, 10, 10 | ldualvadd 38827 | . . 3 ⊢ (𝜑 → ((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = ((𝑉 × { 0 }) ∘f (+g‘𝑅)(𝑉 × { 0 }))) |
12 | 8, 2, 3, 7, 1, 6, 10 | lfladd0l 38772 | . . 3 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f (+g‘𝑅)(𝑉 × { 0 })) = (𝑉 × { 0 })) |
13 | 11, 12 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = (𝑉 × { 0 })) |
14 | 4, 6 | ldualgrp 38844 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Grp) |
15 | eqid 2726 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | 1, 4, 15, 6, 10 | ldualelvbase 38825 | . . 3 ⊢ (𝜑 → (𝑉 × { 0 }) ∈ (Base‘𝐷)) |
17 | ldualv0.o | . . . 4 ⊢ 𝑂 = (0g‘𝐷) | |
18 | 15, 5, 17 | grpid 18970 | . . 3 ⊢ ((𝐷 ∈ Grp ∧ (𝑉 × { 0 }) ∈ (Base‘𝐷)) → (((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = (𝑉 × { 0 }) ↔ 𝑂 = (𝑉 × { 0 }))) |
19 | 14, 16, 18 | syl2anc 582 | . 2 ⊢ (𝜑 → (((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = (𝑉 × { 0 }) ↔ 𝑂 = (𝑉 × { 0 }))) |
20 | 13, 19 | mpbid 231 | 1 ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {csn 4633 × cxp 5680 ‘cfv 6554 (class class class)co 7424 ∘f cof 7688 Basecbs 17213 +gcplusg 17266 Scalarcsca 17269 0gc0g 17454 Grpcgrp 18928 LModclmod 20836 LFnlclfn 38755 LDualcld 38821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-sca 17282 df-vsca 17283 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-lmod 20838 df-lfl 38756 df-ldual 38822 |
This theorem is referenced by: ldual0vcl 38849 lkr0f2 38859 lduallkr3 38860 lclkrlem1 41205 lclkrlem2j 41215 lcd0v 41310 lcd0v2 41311 |
Copyright terms: Public domain | W3C validator |