Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual0v | Structured version Visualization version GIF version |
Description: The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
Ref | Expression |
---|---|
ldualv0.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualv0.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualv0.z | ⊢ 0 = (0g‘𝑅) |
ldualv0.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualv0.o | ⊢ 𝑂 = (0g‘𝐷) |
ldualv0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
ldual0v | ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
2 | ldualv0.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | ldualv0.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
5 | eqid 2738 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
6 | ldualv0.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | ldualv0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
8 | ldualv0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
9 | 2, 7, 8, 1 | lfl0f 37010 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
11 | 1, 2, 3, 4, 5, 6, 10, 10 | ldualvadd 37070 | . . 3 ⊢ (𝜑 → ((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = ((𝑉 × { 0 }) ∘f (+g‘𝑅)(𝑉 × { 0 }))) |
12 | 8, 2, 3, 7, 1, 6, 10 | lfladd0l 37015 | . . 3 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f (+g‘𝑅)(𝑉 × { 0 })) = (𝑉 × { 0 })) |
13 | 11, 12 | eqtrd 2778 | . 2 ⊢ (𝜑 → ((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = (𝑉 × { 0 })) |
14 | 4, 6 | ldualgrp 37087 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Grp) |
15 | eqid 2738 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | 1, 4, 15, 6, 10 | ldualelvbase 37068 | . . 3 ⊢ (𝜑 → (𝑉 × { 0 }) ∈ (Base‘𝐷)) |
17 | ldualv0.o | . . . 4 ⊢ 𝑂 = (0g‘𝐷) | |
18 | 15, 5, 17 | grpid 18530 | . . 3 ⊢ ((𝐷 ∈ Grp ∧ (𝑉 × { 0 }) ∈ (Base‘𝐷)) → (((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = (𝑉 × { 0 }) ↔ 𝑂 = (𝑉 × { 0 }))) |
19 | 14, 16, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → (((𝑉 × { 0 })(+g‘𝐷)(𝑉 × { 0 })) = (𝑉 × { 0 }) ↔ 𝑂 = (𝑉 × { 0 }))) |
20 | 13, 19 | mpbid 231 | 1 ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 0gc0g 17067 Grpcgrp 18492 LModclmod 20038 LFnlclfn 36998 LDualcld 37064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-sca 16904 df-vsca 16905 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lfl 36999 df-ldual 37065 |
This theorem is referenced by: ldual0vcl 37092 lkr0f2 37102 lduallkr3 37103 lclkrlem1 39447 lclkrlem2j 39457 lcd0v 39552 lcd0v2 39553 |
Copyright terms: Public domain | W3C validator |