MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvdiv Structured version   Visualization version   GIF version

Theorem grpoinvdiv 30500
Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpoinvdiv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴))

Proof of Theorem grpoinvdiv
StepHypRef Expression
1 grpdiv.1 . . . 4 𝑋 = ran 𝐺
2 grpdiv.2 . . . 4 𝑁 = (inv‘𝐺)
3 grpdiv.3 . . . 4 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivval 30498 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
54fveq2d 6830 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝑁‘(𝐴𝐺(𝑁𝐵))))
61, 2grpoinvcl 30487 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
763adant2 1131 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
81, 2grpoinvop 30496 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝑁𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝑁𝐵))) = ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)))
97, 8syld3an3 1411 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝑁𝐵))) = ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)))
101, 2grpo2inv 30494 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁‘(𝑁𝐵)) = 𝐵)
11103adant2 1131 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝑁𝐵)) = 𝐵)
1211oveq1d 7368 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐺(𝑁𝐴)))
131, 2, 3grpodivval 30498 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐵𝐺(𝑁𝐴)))
14133com23 1126 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) = (𝐵𝐺(𝑁𝐴)))
1512, 14eqtr4d 2767 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐷𝐴))
165, 9, 153eqtrd 2768 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  ran crn 5624  cfv 6486  (class class class)co 7353  GrpOpcgr 30452  invcgn 30454   /𝑔 cgs 30455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-grpo 30456  df-gid 30457  df-ginv 30458  df-gdiv 30459
This theorem is referenced by:  grpodivdiv  30503
  Copyright terms: Public domain W3C validator