MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvdiv Structured version   Visualization version   GIF version

Theorem grpoinvdiv 29521
Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (invβ€˜πΊ)
grpdiv.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpoinvdiv ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐷𝐡)) = (𝐡𝐷𝐴))

Proof of Theorem grpoinvdiv
StepHypRef Expression
1 grpdiv.1 . . . 4 𝑋 = ran 𝐺
2 grpdiv.2 . . . 4 𝑁 = (invβ€˜πΊ)
3 grpdiv.3 . . . 4 𝐷 = ( /𝑔 β€˜πΊ)
41, 2, 3grpodivval 29519 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) = (𝐴𝐺(π‘β€˜π΅)))
54fveq2d 6847 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐷𝐡)) = (π‘β€˜(𝐴𝐺(π‘β€˜π΅))))
61, 2grpoinvcl 29508 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΅) ∈ 𝑋)
763adant2 1132 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΅) ∈ 𝑋)
81, 2grpoinvop 29517 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΅) ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐺(π‘β€˜π΅))) = ((π‘β€˜(π‘β€˜π΅))𝐺(π‘β€˜π΄)))
97, 8syld3an3 1410 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐺(π‘β€˜π΅))) = ((π‘β€˜(π‘β€˜π΅))𝐺(π‘β€˜π΄)))
101, 2grpo2inv 29515 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΅)) = 𝐡)
11103adant2 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΅)) = 𝐡)
1211oveq1d 7373 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(π‘β€˜π΅))𝐺(π‘β€˜π΄)) = (𝐡𝐺(π‘β€˜π΄)))
131, 2, 3grpodivval 29519 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝐡𝐷𝐴) = (𝐡𝐺(π‘β€˜π΄)))
14133com23 1127 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐴) = (𝐡𝐺(π‘β€˜π΄)))
1512, 14eqtr4d 2776 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(π‘β€˜π΅))𝐺(π‘β€˜π΄)) = (𝐡𝐷𝐴))
165, 9, 153eqtrd 2777 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐷𝐡)) = (𝐡𝐷𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  ran crn 5635  β€˜cfv 6497  (class class class)co 7358  GrpOpcgr 29473  invcgn 29475   /𝑔 cgs 29476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-grpo 29477  df-gid 29478  df-ginv 29479  df-gdiv 29480
This theorem is referenced by:  grpodivdiv  29524
  Copyright terms: Public domain W3C validator