MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvdiv Structured version   Visualization version   GIF version

Theorem grpoinvdiv 29187
Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpoinvdiv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴))

Proof of Theorem grpoinvdiv
StepHypRef Expression
1 grpdiv.1 . . . 4 𝑋 = ran 𝐺
2 grpdiv.2 . . . 4 𝑁 = (inv‘𝐺)
3 grpdiv.3 . . . 4 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivval 29185 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
54fveq2d 6834 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝑁‘(𝐴𝐺(𝑁𝐵))))
61, 2grpoinvcl 29174 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
763adant2 1131 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
81, 2grpoinvop 29183 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝑁𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝑁𝐵))) = ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)))
97, 8syld3an3 1409 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝑁𝐵))) = ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)))
101, 2grpo2inv 29181 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁‘(𝑁𝐵)) = 𝐵)
11103adant2 1131 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝑁𝐵)) = 𝐵)
1211oveq1d 7357 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐺(𝑁𝐴)))
131, 2, 3grpodivval 29185 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐵𝐺(𝑁𝐴)))
14133com23 1126 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) = (𝐵𝐺(𝑁𝐴)))
1512, 14eqtr4d 2780 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐷𝐴))
165, 9, 153eqtrd 2781 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  ran crn 5626  cfv 6484  (class class class)co 7342  GrpOpcgr 29139  invcgn 29141   /𝑔 cgs 29142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-1st 7904  df-2nd 7905  df-grpo 29143  df-gid 29144  df-ginv 29145  df-gdiv 29146
This theorem is referenced by:  grpodivdiv  29190
  Copyright terms: Public domain W3C validator