Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpoinvdiv | Structured version Visualization version GIF version |
Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpoinvdiv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | grpdiv.2 | . . . 4 ⊢ 𝑁 = (inv‘𝐺) | |
3 | grpdiv.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
4 | 1, 2, 3 | grpodivval 28616 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
5 | 4 | fveq2d 6721 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝑁‘(𝐴𝐺(𝑁‘𝐵)))) |
6 | 1, 2 | grpoinvcl 28605 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
7 | 6 | 3adant2 1133 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
8 | 1, 2 | grpoinvop 28614 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝑁‘𝐵))) = ((𝑁‘(𝑁‘𝐵))𝐺(𝑁‘𝐴))) |
9 | 7, 8 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝑁‘𝐵))) = ((𝑁‘(𝑁‘𝐵))𝐺(𝑁‘𝐴))) |
10 | 1, 2 | grpo2inv 28612 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝑁‘𝐵)) = 𝐵) |
11 | 10 | 3adant2 1133 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝑁‘𝐵)) = 𝐵) |
12 | 11 | oveq1d 7228 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝑁‘𝐴))) |
13 | 1, 2, 3 | grpodivval 28616 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐵𝐺(𝑁‘𝐴))) |
14 | 13 | 3com23 1128 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐵𝐺(𝑁‘𝐴))) |
15 | 12, 14 | eqtr4d 2780 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = (𝐵𝐷𝐴)) |
16 | 5, 9, 15 | 3eqtrd 2781 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ran crn 5552 ‘cfv 6380 (class class class)co 7213 GrpOpcgr 28570 invcgn 28572 /𝑔 cgs 28573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 |
This theorem is referenced by: grpodivdiv 28621 |
Copyright terms: Public domain | W3C validator |