MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Structured version   Visualization version   GIF version

Theorem grpo2inv 29779
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpo2inv ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) = 𝐴)

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
2 grpasscan1.2 . . . . 5 𝑁 = (invβ€˜πΊ)
31, 2grpoinvcl 29772 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)
4 eqid 2732 . . . . 5 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
51, 4, 2grporinv 29775 . . . 4 ((𝐺 ∈ GrpOp ∧ (π‘β€˜π΄) ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = (GIdβ€˜πΊ))
63, 5syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = (GIdβ€˜πΊ))
71, 4, 2grpolinv 29774 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺𝐴) = (GIdβ€˜πΊ))
86, 7eqtr4d 2775 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = ((π‘β€˜π΄)𝐺𝐴))
91, 2grpoinvcl 29772 . . . . 5 ((𝐺 ∈ GrpOp ∧ (π‘β€˜π΄) ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) ∈ 𝑋)
103, 9syldan 591 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) ∈ 𝑋)
11 simpr 485 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
1210, 11, 33jca 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜(π‘β€˜π΄)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΄) ∈ 𝑋))
131grpolcan 29778 . . 3 ((𝐺 ∈ GrpOp ∧ ((π‘β€˜(π‘β€˜π΄)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΄) ∈ 𝑋)) β†’ (((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = ((π‘β€˜π΄)𝐺𝐴) ↔ (π‘β€˜(π‘β€˜π΄)) = 𝐴))
1412, 13syldan 591 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = ((π‘β€˜π΄)𝐺𝐴) ↔ (π‘β€˜(π‘β€˜π΄)) = 𝐴))
158, 14mpbid 231 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  GrpOpcgr 29737  GIdcgi 29738  invcgn 29739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-grpo 29741  df-gid 29742  df-ginv 29743
This theorem is referenced by:  grpoinvf  29780  grpodivinv  29784  grpoinvdiv  29785  nvnegneg  29897
  Copyright terms: Public domain W3C validator