MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Structured version   Visualization version   GIF version

Theorem grpo2inv 30467
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpo2inv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) = 𝐴)

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
2 grpasscan1.2 . . . . 5 𝑁 = (inv‘𝐺)
31, 2grpoinvcl 30460 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
4 eqid 2730 . . . . 5 (GId‘𝐺) = (GId‘𝐺)
51, 4, 2grporinv 30463 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = (GId‘𝐺))
63, 5syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = (GId‘𝐺))
71, 4, 2grpolinv 30462 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = (GId‘𝐺))
86, 7eqtr4d 2768 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴))
91, 2grpoinvcl 30460 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑁‘(𝑁𝐴)) ∈ 𝑋)
103, 9syldan 591 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) ∈ 𝑋)
11 simpr 484 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → 𝐴𝑋)
1210, 11, 33jca 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁‘(𝑁𝐴)) ∈ 𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
131grpolcan 30466 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁𝐴)) ∈ 𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → (((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁𝐴)) = 𝐴))
1412, 13syldan 591 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁𝐴)) = 𝐴))
158, 14mpbid 232 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5642  cfv 6514  (class class class)co 7390  GrpOpcgr 30425  GIdcgi 30426  invcgn 30427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-grpo 30429  df-gid 30430  df-ginv 30431
This theorem is referenced by:  grpoinvf  30468  grpodivinv  30472  grpoinvdiv  30473  nvnegneg  30585
  Copyright terms: Public domain W3C validator