Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpo2inv | Structured version Visualization version GIF version |
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 |
grpasscan1.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpo2inv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpasscan1.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpasscan1.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
3 | 1, 2 | grpoinvcl 28787 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
4 | eqid 2738 | . . . . 5 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 4, 2 | grporinv 28790 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
6 | 3, 5 | syldan 590 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
7 | 1, 4, 2 | grpolinv 28789 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
8 | 6, 7 | eqtr4d 2781 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴)) |
9 | 1, 2 | grpoinvcl 28787 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
10 | 3, 9 | syldan 590 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
11 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
12 | 10, 11, 3 | 3jca 1126 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
13 | 1 | grpolcan 28793 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
14 | 12, 13 | syldan 590 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
15 | 8, 14 | mpbid 231 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 GrpOpcgr 28752 GIdcgi 28753 invcgn 28754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-grpo 28756 df-gid 28757 df-ginv 28758 |
This theorem is referenced by: grpoinvf 28795 grpodivinv 28799 grpoinvdiv 28800 nvnegneg 28912 |
Copyright terms: Public domain | W3C validator |