| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpo2inv | Structured version Visualization version GIF version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 |
| grpasscan1.2 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpo2inv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan1.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpasscan1.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
| 3 | 1, 2 | grpoinvcl 30505 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| 4 | eqid 2735 | . . . . 5 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 5 | 1, 4, 2 | grporinv 30508 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
| 6 | 3, 5 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
| 7 | 1, 4, 2 | grpolinv 30507 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
| 8 | 6, 7 | eqtr4d 2773 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴)) |
| 9 | 1, 2 | grpoinvcl 30505 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
| 10 | 3, 9 | syldan 591 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 12 | 10, 11, 3 | 3jca 1128 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
| 13 | 1 | grpolcan 30511 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
| 14 | 12, 13 | syldan 591 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
| 15 | 8, 14 | mpbid 232 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 (class class class)co 7405 GrpOpcgr 30470 GIdcgi 30471 invcgn 30472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-grpo 30474 df-gid 30475 df-ginv 30476 |
| This theorem is referenced by: grpoinvf 30513 grpodivinv 30517 grpoinvdiv 30518 nvnegneg 30630 |
| Copyright terms: Public domain | W3C validator |