MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Structured version   Visualization version   GIF version

Theorem grpo2inv 30433
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpo2inv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) = 𝐴)

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
2 grpasscan1.2 . . . . 5 𝑁 = (inv‘𝐺)
31, 2grpoinvcl 30426 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
4 eqid 2729 . . . . 5 (GId‘𝐺) = (GId‘𝐺)
51, 4, 2grporinv 30429 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = (GId‘𝐺))
63, 5syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = (GId‘𝐺))
71, 4, 2grpolinv 30428 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = (GId‘𝐺))
86, 7eqtr4d 2767 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴))
91, 2grpoinvcl 30426 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑁‘(𝑁𝐴)) ∈ 𝑋)
103, 9syldan 591 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) ∈ 𝑋)
11 simpr 484 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → 𝐴𝑋)
1210, 11, 33jca 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁‘(𝑁𝐴)) ∈ 𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
131grpolcan 30432 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁𝐴)) ∈ 𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → (((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁𝐴)) = 𝐴))
1412, 13syldan 591 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁𝐴)) = 𝐴))
158, 14mpbid 232 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5632  cfv 6499  (class class class)co 7369  GrpOpcgr 30391  GIdcgi 30392  invcgn 30393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-grpo 30395  df-gid 30396  df-ginv 30397
This theorem is referenced by:  grpoinvf  30434  grpodivinv  30438  grpoinvdiv  30439  nvnegneg  30551
  Copyright terms: Public domain W3C validator