![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpo2inv | Structured version Visualization version GIF version |
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpasscan1.1 | β’ π = ran πΊ |
grpasscan1.2 | β’ π = (invβπΊ) |
Ref | Expression |
---|---|
grpo2inv | β’ ((πΊ β GrpOp β§ π΄ β π) β (πβ(πβπ΄)) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpasscan1.1 | . . . . 5 β’ π = ran πΊ | |
2 | grpasscan1.2 | . . . . 5 β’ π = (invβπΊ) | |
3 | 1, 2 | grpoinvcl 29772 | . . . 4 β’ ((πΊ β GrpOp β§ π΄ β π) β (πβπ΄) β π) |
4 | eqid 2732 | . . . . 5 β’ (GIdβπΊ) = (GIdβπΊ) | |
5 | 1, 4, 2 | grporinv 29775 | . . . 4 β’ ((πΊ β GrpOp β§ (πβπ΄) β π) β ((πβπ΄)πΊ(πβ(πβπ΄))) = (GIdβπΊ)) |
6 | 3, 5 | syldan 591 | . . 3 β’ ((πΊ β GrpOp β§ π΄ β π) β ((πβπ΄)πΊ(πβ(πβπ΄))) = (GIdβπΊ)) |
7 | 1, 4, 2 | grpolinv 29774 | . . 3 β’ ((πΊ β GrpOp β§ π΄ β π) β ((πβπ΄)πΊπ΄) = (GIdβπΊ)) |
8 | 6, 7 | eqtr4d 2775 | . 2 β’ ((πΊ β GrpOp β§ π΄ β π) β ((πβπ΄)πΊ(πβ(πβπ΄))) = ((πβπ΄)πΊπ΄)) |
9 | 1, 2 | grpoinvcl 29772 | . . . . 5 β’ ((πΊ β GrpOp β§ (πβπ΄) β π) β (πβ(πβπ΄)) β π) |
10 | 3, 9 | syldan 591 | . . . 4 β’ ((πΊ β GrpOp β§ π΄ β π) β (πβ(πβπ΄)) β π) |
11 | simpr 485 | . . . 4 β’ ((πΊ β GrpOp β§ π΄ β π) β π΄ β π) | |
12 | 10, 11, 3 | 3jca 1128 | . . 3 β’ ((πΊ β GrpOp β§ π΄ β π) β ((πβ(πβπ΄)) β π β§ π΄ β π β§ (πβπ΄) β π)) |
13 | 1 | grpolcan 29778 | . . 3 β’ ((πΊ β GrpOp β§ ((πβ(πβπ΄)) β π β§ π΄ β π β§ (πβπ΄) β π)) β (((πβπ΄)πΊ(πβ(πβπ΄))) = ((πβπ΄)πΊπ΄) β (πβ(πβπ΄)) = π΄)) |
14 | 12, 13 | syldan 591 | . 2 β’ ((πΊ β GrpOp β§ π΄ β π) β (((πβπ΄)πΊ(πβ(πβπ΄))) = ((πβπ΄)πΊπ΄) β (πβ(πβπ΄)) = π΄)) |
15 | 8, 14 | mpbid 231 | 1 β’ ((πΊ β GrpOp β§ π΄ β π) β (πβ(πβπ΄)) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 ran crn 5677 βcfv 6543 (class class class)co 7408 GrpOpcgr 29737 GIdcgi 29738 invcgn 29739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-grpo 29741 df-gid 29742 df-ginv 29743 |
This theorem is referenced by: grpoinvf 29780 grpodivinv 29784 grpoinvdiv 29785 nvnegneg 29897 |
Copyright terms: Public domain | W3C validator |