MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Structured version   Visualization version   GIF version

Theorem grpo2inv 30563
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpo2inv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) = 𝐴)

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
2 grpasscan1.2 . . . . 5 𝑁 = (inv‘𝐺)
31, 2grpoinvcl 30556 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
4 eqid 2740 . . . . 5 (GId‘𝐺) = (GId‘𝐺)
51, 4, 2grporinv 30559 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = (GId‘𝐺))
63, 5syldan 590 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = (GId‘𝐺))
71, 4, 2grpolinv 30558 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = (GId‘𝐺))
86, 7eqtr4d 2783 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴))
91, 2grpoinvcl 30556 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑁‘(𝑁𝐴)) ∈ 𝑋)
103, 9syldan 590 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) ∈ 𝑋)
11 simpr 484 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → 𝐴𝑋)
1210, 11, 33jca 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁‘(𝑁𝐴)) ∈ 𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
131grpolcan 30562 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁𝐴)) ∈ 𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → (((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁𝐴)) = 𝐴))
1412, 13syldan 590 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺(𝑁‘(𝑁𝐴))) = ((𝑁𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁𝐴)) = 𝐴))
158, 14mpbid 232 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁‘(𝑁𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ran crn 5701  cfv 6573  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522  invcgn 30523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-grpo 30525  df-gid 30526  df-ginv 30527
This theorem is referenced by:  grpoinvf  30564  grpodivinv  30568  grpoinvdiv  30569  nvnegneg  30681
  Copyright terms: Public domain W3C validator