| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpo2inv | Structured version Visualization version GIF version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 |
| grpasscan1.2 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpo2inv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan1.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpasscan1.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
| 3 | 1, 2 | grpoinvcl 30426 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| 4 | eqid 2729 | . . . . 5 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 5 | 1, 4, 2 | grporinv 30429 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
| 6 | 3, 5 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
| 7 | 1, 4, 2 | grpolinv 30428 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
| 8 | 6, 7 | eqtr4d 2767 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴)) |
| 9 | 1, 2 | grpoinvcl 30426 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
| 10 | 3, 9 | syldan 591 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 12 | 10, 11, 3 | 3jca 1128 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
| 13 | 1 | grpolcan 30432 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
| 14 | 12, 13 | syldan 591 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
| 15 | 8, 14 | mpbid 232 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5632 ‘cfv 6499 (class class class)co 7369 GrpOpcgr 30391 GIdcgi 30392 invcgn 30393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-grpo 30395 df-gid 30396 df-ginv 30397 |
| This theorem is referenced by: grpoinvf 30434 grpodivinv 30438 grpoinvdiv 30439 nvnegneg 30551 |
| Copyright terms: Public domain | W3C validator |