![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpo2inv | Structured version Visualization version GIF version |
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 |
grpasscan1.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpo2inv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpasscan1.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpasscan1.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
3 | 1, 2 | grpoinvcl 30553 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
4 | eqid 2735 | . . . . 5 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 4, 2 | grporinv 30556 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
6 | 3, 5 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
7 | 1, 4, 2 | grpolinv 30555 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
8 | 6, 7 | eqtr4d 2778 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴)) |
9 | 1, 2 | grpoinvcl 30553 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
10 | 3, 9 | syldan 591 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
11 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
12 | 10, 11, 3 | 3jca 1127 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
13 | 1 | grpolcan 30559 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
14 | 12, 13 | syldan 591 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
15 | 8, 14 | mpbid 232 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ran crn 5690 ‘cfv 6563 (class class class)co 7431 GrpOpcgr 30518 GIdcgi 30519 invcgn 30520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-grpo 30522 df-gid 30523 df-ginv 30524 |
This theorem is referenced by: grpoinvf 30561 grpodivinv 30565 grpoinvdiv 30566 nvnegneg 30678 |
Copyright terms: Public domain | W3C validator |