MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Structured version   Visualization version   GIF version

Theorem grpo2inv 30369
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpo2inv ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) = 𝐴)

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
2 grpasscan1.2 . . . . 5 𝑁 = (invβ€˜πΊ)
31, 2grpoinvcl 30362 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)
4 eqid 2728 . . . . 5 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
51, 4, 2grporinv 30365 . . . 4 ((𝐺 ∈ GrpOp ∧ (π‘β€˜π΄) ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = (GIdβ€˜πΊ))
63, 5syldan 589 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = (GIdβ€˜πΊ))
71, 4, 2grpolinv 30364 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺𝐴) = (GIdβ€˜πΊ))
86, 7eqtr4d 2771 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = ((π‘β€˜π΄)𝐺𝐴))
91, 2grpoinvcl 30362 . . . . 5 ((𝐺 ∈ GrpOp ∧ (π‘β€˜π΄) ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) ∈ 𝑋)
103, 9syldan 589 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) ∈ 𝑋)
11 simpr 483 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
1210, 11, 33jca 1125 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜(π‘β€˜π΄)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΄) ∈ 𝑋))
131grpolcan 30368 . . 3 ((𝐺 ∈ GrpOp ∧ ((π‘β€˜(π‘β€˜π΄)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΄) ∈ 𝑋)) β†’ (((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = ((π‘β€˜π΄)𝐺𝐴) ↔ (π‘β€˜(π‘β€˜π΄)) = 𝐴))
1412, 13syldan 589 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (((π‘β€˜π΄)𝐺(π‘β€˜(π‘β€˜π΄))) = ((π‘β€˜π΄)𝐺𝐴) ↔ (π‘β€˜(π‘β€˜π΄)) = 𝐴))
158, 14mpbid 231 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΄)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  ran crn 5683  β€˜cfv 6553  (class class class)co 7426  GrpOpcgr 30327  GIdcgi 30328  invcgn 30329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-grpo 30331  df-gid 30332  df-ginv 30333
This theorem is referenced by:  grpoinvf  30370  grpodivinv  30374  grpoinvdiv  30375  nvnegneg  30487
  Copyright terms: Public domain W3C validator