MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvsub Structured version   Visualization version   GIF version

Theorem grpinvsub 19010
Description: Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
grpinvsub.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvsub ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))

Proof of Theorem grpinvsub
StepHypRef Expression
1 grpsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 grpinvsub.n . . . . . 6 𝑁 = (invg𝐺)
31, 2grpinvcl 18975 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
433adant2 1131 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
5 eqid 2736 . . . . 5 (+g𝐺) = (+g𝐺)
61, 5, 2grpinvadd 19006 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
74, 6syld3an3 1411 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
81, 2grpinvinv 18993 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
983adant2 1131 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
109oveq1d 7425 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)) = (𝑌(+g𝐺)(𝑁𝑋)))
117, 10eqtrd 2771 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = (𝑌(+g𝐺)(𝑁𝑋)))
12 grpsubcl.m . . . . 5 = (-g𝐺)
131, 5, 2, 12grpsubval 18973 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
14133adant1 1130 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
1514fveq2d 6885 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
161, 5, 2, 12grpsubval 18973 . . . 4 ((𝑌𝐵𝑋𝐵) → (𝑌 𝑋) = (𝑌(+g𝐺)(𝑁𝑋)))
1716ancoms 458 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = (𝑌(+g𝐺)(𝑁𝑋)))
18173adant1 1130 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = (𝑌(+g𝐺)(𝑁𝑋)))
1911, 15, 183eqtr4d 2781 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926
This theorem is referenced by:  grpsubsub  19017  ablsub2inv  19794  lspsnsub  20969  ghmcnp  24058  nrmmetd  24518  nmsub  24567  erler  33265  mapdpglem14  41709
  Copyright terms: Public domain W3C validator