Proof of Theorem abladdsub4
| Step | Hyp | Ref
| Expression |
| 1 | | ablgrp 19803 |
. . . 4
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 2 | 1 | 3ad2ant1 1134 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Grp) |
| 3 | | simp2l 1200 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 4 | | simp2r 1201 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 5 | | ablsubadd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
| 6 | | ablsubadd.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 7 | 5, 6 | grpcl 18959 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 8 | 2, 3, 4, 7 | syl3anc 1373 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
| 9 | | simp3l 1202 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
| 10 | | simp3r 1203 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) |
| 11 | 5, 6 | grpcl 18959 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
| 12 | 2, 9, 10, 11 | syl3anc 1373 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 + 𝑊) ∈ 𝐵) |
| 13 | 5, 6 | grpcl 18959 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 + 𝑌) ∈ 𝐵) |
| 14 | 2, 9, 4, 13 | syl3anc 1373 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 + 𝑌) ∈ 𝐵) |
| 15 | | ablsubadd.m |
. . . 4
⊢ − =
(-g‘𝐺) |
| 16 | 5, 15 | grpsubrcan 19039 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵)) → (((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑍 + 𝑊) − (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊))) |
| 17 | 2, 8, 12, 14, 16 | syl13anc 1374 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑍 + 𝑊) − (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊))) |
| 18 | | simp1 1137 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Abel) |
| 19 | 5, 6, 15 | ablsub4 19828 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑋 − 𝑍) + (𝑌 − 𝑌))) |
| 20 | 18, 3, 4, 9, 4, 19 | syl122anc 1381 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑋 − 𝑍) + (𝑌 − 𝑌))) |
| 21 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 22 | 5, 21, 15 | grpsubid 19042 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑌 − 𝑌) = (0g‘𝐺)) |
| 23 | 2, 4, 22 | syl2anc 584 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 − 𝑌) = (0g‘𝐺)) |
| 24 | 23 | oveq2d 7447 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 − 𝑍) + (𝑌 − 𝑌)) = ((𝑋 − 𝑍) + (0g‘𝐺))) |
| 25 | 5, 15 | grpsubcl 19038 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) ∈ 𝐵) |
| 26 | 2, 3, 9, 25 | syl3anc 1373 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 − 𝑍) ∈ 𝐵) |
| 27 | 5, 6, 21 | grprid 18986 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑋 − 𝑍) ∈ 𝐵) → ((𝑋 − 𝑍) + (0g‘𝐺)) = (𝑋 − 𝑍)) |
| 28 | 2, 26, 27 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 − 𝑍) + (0g‘𝐺)) = (𝑋 − 𝑍)) |
| 29 | 20, 24, 28 | 3eqtrd 2781 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑌)) = (𝑋 − 𝑍)) |
| 30 | 5, 6, 15 | ablsub4 19828 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑍 + 𝑊) − (𝑍 + 𝑌)) = ((𝑍 − 𝑍) + (𝑊 − 𝑌))) |
| 31 | 18, 9, 10, 9, 4, 30 | syl122anc 1381 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑍 + 𝑊) − (𝑍 + 𝑌)) = ((𝑍 − 𝑍) + (𝑊 − 𝑌))) |
| 32 | 5, 21, 15 | grpsubid 19042 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → (𝑍 − 𝑍) = (0g‘𝐺)) |
| 33 | 2, 9, 32 | syl2anc 584 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 − 𝑍) = (0g‘𝐺)) |
| 34 | 33 | oveq1d 7446 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑍 − 𝑍) + (𝑊 − 𝑌)) = ((0g‘𝐺) + (𝑊 − 𝑌))) |
| 35 | 5, 15 | grpsubcl 19038 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑊 − 𝑌) ∈ 𝐵) |
| 36 | 2, 10, 4, 35 | syl3anc 1373 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑊 − 𝑌) ∈ 𝐵) |
| 37 | 5, 6, 21 | grplid 18985 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑊 − 𝑌) ∈ 𝐵) → ((0g‘𝐺) + (𝑊 − 𝑌)) = (𝑊 − 𝑌)) |
| 38 | 2, 36, 37 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((0g‘𝐺) + (𝑊 − 𝑌)) = (𝑊 − 𝑌)) |
| 39 | 31, 34, 38 | 3eqtrd 2781 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑍 + 𝑊) − (𝑍 + 𝑌)) = (𝑊 − 𝑌)) |
| 40 | 29, 39 | eqeq12d 2753 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑍 + 𝑊) − (𝑍 + 𝑌)) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) |
| 41 | 17, 40 | bitr3d 281 |
1
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) |