MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub4 Structured version   Visualization version   GIF version

Theorem abladdsub4 19795
Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
abladdsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 𝑍) = (𝑊 𝑌)))

Proof of Theorem abladdsub4
StepHypRef Expression
1 ablgrp 19769 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1130 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1196 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1197 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 18922 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1198 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1199 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 18922 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
135, 6grpcl 18922 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
142, 9, 4, 13syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑌) ∈ 𝐵)
15 ablsubadd.m . . . 4 = (-g𝐺)
165, 15grpsubrcan 19001 . . 3 ((𝐺 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵)) → (((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑍 + 𝑊) (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊)))
172, 8, 12, 14, 16syl13anc 1369 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑍 + 𝑊) (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊)))
18 simp1 1133 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
195, 6, 15ablsub4 19794 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑋 𝑍) + (𝑌 𝑌)))
2018, 3, 4, 9, 4, 19syl122anc 1376 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑋 𝑍) + (𝑌 𝑌)))
21 eqid 2725 . . . . . . 7 (0g𝐺) = (0g𝐺)
225, 21, 15grpsubid 19004 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 𝑌) = (0g𝐺))
232, 4, 22syl2anc 582 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑌) = (0g𝐺))
2423oveq2d 7435 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑌)) = ((𝑋 𝑍) + (0g𝐺)))
255, 15grpsubcl 19000 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
262, 3, 9, 25syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) ∈ 𝐵)
275, 6, 21grprid 18949 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑍) + (0g𝐺)) = (𝑋 𝑍))
282, 26, 27syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (0g𝐺)) = (𝑋 𝑍))
2920, 24, 283eqtrd 2769 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑌)) = (𝑋 𝑍))
305, 6, 15ablsub4 19794 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑍𝐵𝑊𝐵) ∧ (𝑍𝐵𝑌𝐵)) → ((𝑍 + 𝑊) (𝑍 + 𝑌)) = ((𝑍 𝑍) + (𝑊 𝑌)))
3118, 9, 10, 9, 4, 30syl122anc 1376 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑍 + 𝑊) (𝑍 + 𝑌)) = ((𝑍 𝑍) + (𝑊 𝑌)))
325, 21, 15grpsubid 19004 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (𝑍 𝑍) = (0g𝐺))
332, 9, 32syl2anc 582 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑍) = (0g𝐺))
3433oveq1d 7434 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑍 𝑍) + (𝑊 𝑌)) = ((0g𝐺) + (𝑊 𝑌)))
355, 15grpsubcl 19000 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
362, 10, 4, 35syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑊 𝑌) ∈ 𝐵)
375, 6, 21grplid 18948 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑊 𝑌) ∈ 𝐵) → ((0g𝐺) + (𝑊 𝑌)) = (𝑊 𝑌))
382, 36, 37syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((0g𝐺) + (𝑊 𝑌)) = (𝑊 𝑌))
3931, 34, 383eqtrd 2769 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑍 + 𝑊) (𝑍 + 𝑌)) = (𝑊 𝑌))
4029, 39eqeq12d 2741 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑍 + 𝑊) (𝑍 + 𝑌)) ↔ (𝑋 𝑍) = (𝑊 𝑌)))
4117, 40bitr3d 280 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 𝑍) = (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17199  +gcplusg 17252  0gc0g 17440  Grpcgrp 18914  -gcsg 18916  Abelcabl 19765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-grp 18917  df-minusg 18918  df-sbg 18919  df-cmn 19766  df-abl 19767
This theorem is referenced by:  lmodvaddsub4  20826
  Copyright terms: Public domain W3C validator