MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub4 Structured version   Visualization version   GIF version

Theorem abladdsub4 19853
Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
abladdsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 𝑍) = (𝑊 𝑌)))

Proof of Theorem abladdsub4
StepHypRef Expression
1 ablgrp 19827 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1133 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1199 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1200 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 18981 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1201 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1202 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 18981 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
135, 6grpcl 18981 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
142, 9, 4, 13syl3anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑌) ∈ 𝐵)
15 ablsubadd.m . . . 4 = (-g𝐺)
165, 15grpsubrcan 19061 . . 3 ((𝐺 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵)) → (((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑍 + 𝑊) (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊)))
172, 8, 12, 14, 16syl13anc 1372 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑍 + 𝑊) (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊)))
18 simp1 1136 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
195, 6, 15ablsub4 19852 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑋 𝑍) + (𝑌 𝑌)))
2018, 3, 4, 9, 4, 19syl122anc 1379 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑋 𝑍) + (𝑌 𝑌)))
21 eqid 2740 . . . . . . 7 (0g𝐺) = (0g𝐺)
225, 21, 15grpsubid 19064 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 𝑌) = (0g𝐺))
232, 4, 22syl2anc 583 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑌) = (0g𝐺))
2423oveq2d 7464 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑌)) = ((𝑋 𝑍) + (0g𝐺)))
255, 15grpsubcl 19060 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
262, 3, 9, 25syl3anc 1371 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) ∈ 𝐵)
275, 6, 21grprid 19008 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑍) + (0g𝐺)) = (𝑋 𝑍))
282, 26, 27syl2anc 583 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (0g𝐺)) = (𝑋 𝑍))
2920, 24, 283eqtrd 2784 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑌)) = (𝑋 𝑍))
305, 6, 15ablsub4 19852 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑍𝐵𝑊𝐵) ∧ (𝑍𝐵𝑌𝐵)) → ((𝑍 + 𝑊) (𝑍 + 𝑌)) = ((𝑍 𝑍) + (𝑊 𝑌)))
3118, 9, 10, 9, 4, 30syl122anc 1379 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑍 + 𝑊) (𝑍 + 𝑌)) = ((𝑍 𝑍) + (𝑊 𝑌)))
325, 21, 15grpsubid 19064 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (𝑍 𝑍) = (0g𝐺))
332, 9, 32syl2anc 583 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑍) = (0g𝐺))
3433oveq1d 7463 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑍 𝑍) + (𝑊 𝑌)) = ((0g𝐺) + (𝑊 𝑌)))
355, 15grpsubcl 19060 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
362, 10, 4, 35syl3anc 1371 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑊 𝑌) ∈ 𝐵)
375, 6, 21grplid 19007 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑊 𝑌) ∈ 𝐵) → ((0g𝐺) + (𝑊 𝑌)) = (𝑊 𝑌))
382, 36, 37syl2anc 583 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((0g𝐺) + (𝑊 𝑌)) = (𝑊 𝑌))
3931, 34, 383eqtrd 2784 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑍 + 𝑊) (𝑍 + 𝑌)) = (𝑊 𝑌))
4029, 39eqeq12d 2756 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 + 𝑌) (𝑍 + 𝑌)) = ((𝑍 + 𝑊) (𝑍 + 𝑌)) ↔ (𝑋 𝑍) = (𝑊 𝑌)))
4117, 40bitr3d 281 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 𝑍) = (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825
This theorem is referenced by:  lmodvaddsub4  20934
  Copyright terms: Public domain W3C validator