HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hisubcomi Structured version   Visualization version   GIF version

Theorem hisubcomi 31006
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
hisubcom.1 𝐴 ∈ ℋ
hisubcom.2 𝐵 ∈ ℋ
hisubcom.3 𝐶 ∈ ℋ
hisubcom.4 𝐷 ∈ ℋ
Assertion
Ref Expression
hisubcomi ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐵 𝐴) ·ih (𝐷 𝐶))

Proof of Theorem hisubcomi
StepHypRef Expression
1 hisubcom.2 . . . 4 𝐵 ∈ ℋ
2 hisubcom.1 . . . 4 𝐴 ∈ ℋ
31, 2hvnegdii 30964 . . 3 (-1 · (𝐵 𝐴)) = (𝐴 𝐵)
4 hisubcom.4 . . . 4 𝐷 ∈ ℋ
5 hisubcom.3 . . . 4 𝐶 ∈ ℋ
64, 5hvnegdii 30964 . . 3 (-1 · (𝐷 𝐶)) = (𝐶 𝐷)
73, 6oveq12i 7381 . 2 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((𝐴 𝐵) ·ih (𝐶 𝐷))
8 neg1cn 12147 . . . 4 -1 ∈ ℂ
91, 2hvsubcli 30923 . . . 4 (𝐵 𝐴) ∈ ℋ
104, 5hvsubcli 30923 . . . 4 (𝐷 𝐶) ∈ ℋ
118, 8, 9, 10his35i 30991 . . 3 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((-1 · (∗‘-1)) · ((𝐵 𝐴) ·ih (𝐷 𝐶)))
12 neg1rr 12148 . . . . . . 7 -1 ∈ ℝ
13 cjre 15081 . . . . . . 7 (-1 ∈ ℝ → (∗‘-1) = -1)
1412, 13ax-mp 5 . . . . . 6 (∗‘-1) = -1
1514oveq2i 7380 . . . . 5 (-1 · (∗‘-1)) = (-1 · -1)
16 ax-1cn 11102 . . . . . 6 1 ∈ ℂ
1716, 16mul2negi 11602 . . . . 5 (-1 · -1) = (1 · 1)
18 1t1e1 12319 . . . . 5 (1 · 1) = 1
1915, 17, 183eqtri 2756 . . . 4 (-1 · (∗‘-1)) = 1
2019oveq1i 7379 . . 3 ((-1 · (∗‘-1)) · ((𝐵 𝐴) ·ih (𝐷 𝐶))) = (1 · ((𝐵 𝐴) ·ih (𝐷 𝐶)))
219, 10hicli 30983 . . . 4 ((𝐵 𝐴) ·ih (𝐷 𝐶)) ∈ ℂ
2221mullidi 11155 . . 3 (1 · ((𝐵 𝐴) ·ih (𝐷 𝐶))) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
2311, 20, 223eqtri 2756 . 2 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
247, 23eqtr3i 2754 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   · cmul 11049  -cneg 11382  ccj 15038  chba 30821   · csm 30823   ·ih csp 30824   cmv 30827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-hfvadd 30902  ax-hvcom 30903  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hfi 30981  ax-his1 30984  ax-his3 30986
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043  df-hvsub 30873
This theorem is referenced by:  lnophmlem2  31919
  Copyright terms: Public domain W3C validator