Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hisubcomi | Structured version Visualization version GIF version |
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hisubcom.1 | ⊢ 𝐴 ∈ ℋ |
hisubcom.2 | ⊢ 𝐵 ∈ ℋ |
hisubcom.3 | ⊢ 𝐶 ∈ ℋ |
hisubcom.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
hisubcomi | ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hisubcom.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
2 | hisubcom.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | hvnegdii 29424 | . . 3 ⊢ (-1 ·ℎ (𝐵 −ℎ 𝐴)) = (𝐴 −ℎ 𝐵) |
4 | hisubcom.4 | . . . 4 ⊢ 𝐷 ∈ ℋ | |
5 | hisubcom.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
6 | 4, 5 | hvnegdii 29424 | . . 3 ⊢ (-1 ·ℎ (𝐷 −ℎ 𝐶)) = (𝐶 −ℎ 𝐷) |
7 | 3, 6 | oveq12i 7287 | . 2 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) |
8 | neg1cn 12087 | . . . 4 ⊢ -1 ∈ ℂ | |
9 | 1, 2 | hvsubcli 29383 | . . . 4 ⊢ (𝐵 −ℎ 𝐴) ∈ ℋ |
10 | 4, 5 | hvsubcli 29383 | . . . 4 ⊢ (𝐷 −ℎ 𝐶) ∈ ℋ |
11 | 8, 8, 9, 10 | his35i 29451 | . . 3 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((-1 · (∗‘-1)) · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) |
12 | neg1rr 12088 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
13 | cjre 14850 | . . . . . . 7 ⊢ (-1 ∈ ℝ → (∗‘-1) = -1) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ (∗‘-1) = -1 |
15 | 14 | oveq2i 7286 | . . . . 5 ⊢ (-1 · (∗‘-1)) = (-1 · -1) |
16 | ax-1cn 10929 | . . . . . 6 ⊢ 1 ∈ ℂ | |
17 | 16, 16 | mul2negi 11423 | . . . . 5 ⊢ (-1 · -1) = (1 · 1) |
18 | 1t1e1 12135 | . . . . 5 ⊢ (1 · 1) = 1 | |
19 | 15, 17, 18 | 3eqtri 2770 | . . . 4 ⊢ (-1 · (∗‘-1)) = 1 |
20 | 19 | oveq1i 7285 | . . 3 ⊢ ((-1 · (∗‘-1)) · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) = (1 · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) |
21 | 9, 10 | hicli 29443 | . . . 4 ⊢ ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) ∈ ℂ |
22 | 21 | mulid2i 10980 | . . 3 ⊢ (1 · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
23 | 11, 20, 22 | 3eqtri 2770 | . 2 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
24 | 7, 23 | eqtr3i 2768 | 1 ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 · cmul 10876 -cneg 11206 ∗ccj 14807 ℋchba 29281 ·ℎ csm 29283 ·ih csp 29284 −ℎ cmv 29287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-hfvadd 29362 ax-hvcom 29363 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hfi 29441 ax-his1 29444 ax-his3 29446 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 df-hvsub 29333 |
This theorem is referenced by: lnophmlem2 30379 |
Copyright terms: Public domain | W3C validator |