Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hisubcomi | Structured version Visualization version GIF version |
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hisubcom.1 | ⊢ 𝐴 ∈ ℋ |
hisubcom.2 | ⊢ 𝐵 ∈ ℋ |
hisubcom.3 | ⊢ 𝐶 ∈ ℋ |
hisubcom.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
hisubcomi | ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hisubcom.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
2 | hisubcom.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | hvnegdii 29325 | . . 3 ⊢ (-1 ·ℎ (𝐵 −ℎ 𝐴)) = (𝐴 −ℎ 𝐵) |
4 | hisubcom.4 | . . . 4 ⊢ 𝐷 ∈ ℋ | |
5 | hisubcom.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
6 | 4, 5 | hvnegdii 29325 | . . 3 ⊢ (-1 ·ℎ (𝐷 −ℎ 𝐶)) = (𝐶 −ℎ 𝐷) |
7 | 3, 6 | oveq12i 7267 | . 2 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) |
8 | neg1cn 12017 | . . . 4 ⊢ -1 ∈ ℂ | |
9 | 1, 2 | hvsubcli 29284 | . . . 4 ⊢ (𝐵 −ℎ 𝐴) ∈ ℋ |
10 | 4, 5 | hvsubcli 29284 | . . . 4 ⊢ (𝐷 −ℎ 𝐶) ∈ ℋ |
11 | 8, 8, 9, 10 | his35i 29352 | . . 3 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((-1 · (∗‘-1)) · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) |
12 | neg1rr 12018 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
13 | cjre 14778 | . . . . . . 7 ⊢ (-1 ∈ ℝ → (∗‘-1) = -1) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ (∗‘-1) = -1 |
15 | 14 | oveq2i 7266 | . . . . 5 ⊢ (-1 · (∗‘-1)) = (-1 · -1) |
16 | ax-1cn 10860 | . . . . . 6 ⊢ 1 ∈ ℂ | |
17 | 16, 16 | mul2negi 11353 | . . . . 5 ⊢ (-1 · -1) = (1 · 1) |
18 | 1t1e1 12065 | . . . . 5 ⊢ (1 · 1) = 1 | |
19 | 15, 17, 18 | 3eqtri 2770 | . . . 4 ⊢ (-1 · (∗‘-1)) = 1 |
20 | 19 | oveq1i 7265 | . . 3 ⊢ ((-1 · (∗‘-1)) · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) = (1 · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) |
21 | 9, 10 | hicli 29344 | . . . 4 ⊢ ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) ∈ ℂ |
22 | 21 | mulid2i 10911 | . . 3 ⊢ (1 · ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶))) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
23 | 11, 20, 22 | 3eqtri 2770 | . 2 ⊢ ((-1 ·ℎ (𝐵 −ℎ 𝐴)) ·ih (-1 ·ℎ (𝐷 −ℎ 𝐶))) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
24 | 7, 23 | eqtr3i 2768 | 1 ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = ((𝐵 −ℎ 𝐴) ·ih (𝐷 −ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 · cmul 10807 -cneg 11136 ∗ccj 14735 ℋchba 29182 ·ℎ csm 29184 ·ih csp 29185 −ℎ cmv 29188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hfvadd 29263 ax-hvcom 29264 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hfi 29342 ax-his1 29345 ax-his3 29347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 df-hvsub 29234 |
This theorem is referenced by: lnophmlem2 30280 |
Copyright terms: Public domain | W3C validator |