HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hisubcomi Structured version   Visualization version   GIF version

Theorem hisubcomi 31076
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
hisubcom.1 𝐴 ∈ ℋ
hisubcom.2 𝐵 ∈ ℋ
hisubcom.3 𝐶 ∈ ℋ
hisubcom.4 𝐷 ∈ ℋ
Assertion
Ref Expression
hisubcomi ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐵 𝐴) ·ih (𝐷 𝐶))

Proof of Theorem hisubcomi
StepHypRef Expression
1 hisubcom.2 . . . 4 𝐵 ∈ ℋ
2 hisubcom.1 . . . 4 𝐴 ∈ ℋ
31, 2hvnegdii 31034 . . 3 (-1 · (𝐵 𝐴)) = (𝐴 𝐵)
4 hisubcom.4 . . . 4 𝐷 ∈ ℋ
5 hisubcom.3 . . . 4 𝐶 ∈ ℋ
64, 5hvnegdii 31034 . . 3 (-1 · (𝐷 𝐶)) = (𝐶 𝐷)
73, 6oveq12i 7353 . 2 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((𝐴 𝐵) ·ih (𝐶 𝐷))
8 neg1cn 12105 . . . 4 -1 ∈ ℂ
91, 2hvsubcli 30993 . . . 4 (𝐵 𝐴) ∈ ℋ
104, 5hvsubcli 30993 . . . 4 (𝐷 𝐶) ∈ ℋ
118, 8, 9, 10his35i 31061 . . 3 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((-1 · (∗‘-1)) · ((𝐵 𝐴) ·ih (𝐷 𝐶)))
12 neg1rr 12106 . . . . . . 7 -1 ∈ ℝ
13 cjre 15041 . . . . . . 7 (-1 ∈ ℝ → (∗‘-1) = -1)
1412, 13ax-mp 5 . . . . . 6 (∗‘-1) = -1
1514oveq2i 7352 . . . . 5 (-1 · (∗‘-1)) = (-1 · -1)
16 ax-1cn 11059 . . . . . 6 1 ∈ ℂ
1716, 16mul2negi 11560 . . . . 5 (-1 · -1) = (1 · 1)
18 1t1e1 12277 . . . . 5 (1 · 1) = 1
1915, 17, 183eqtri 2758 . . . 4 (-1 · (∗‘-1)) = 1
2019oveq1i 7351 . . 3 ((-1 · (∗‘-1)) · ((𝐵 𝐴) ·ih (𝐷 𝐶))) = (1 · ((𝐵 𝐴) ·ih (𝐷 𝐶)))
219, 10hicli 31053 . . . 4 ((𝐵 𝐴) ·ih (𝐷 𝐶)) ∈ ℂ
2221mullidi 11112 . . 3 (1 · ((𝐵 𝐴) ·ih (𝐷 𝐶))) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
2311, 20, 223eqtri 2758 . 2 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
247, 23eqtr3i 2756 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  cr 11000  1c1 11002   · cmul 11006  -cneg 11340  ccj 14998  chba 30891   · csm 30893   ·ih csp 30894   cmv 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-hfvadd 30972  ax-hvcom 30973  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hfi 31051  ax-his1 31054  ax-his3 31056
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-cj 15001  df-re 15002  df-im 15003  df-hvsub 30943
This theorem is referenced by:  lnophmlem2  31989
  Copyright terms: Public domain W3C validator