| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnopunii 31993. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopunilem.1 | ⊢ 𝑇 ∈ LinOp |
| lnopunilem.2 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| lnopunilem.3 | ⊢ 𝐴 ∈ ℋ |
| lnopunilem.4 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| lnopunilem2 | ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7428 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) | |
| 2 | fvoveq1 7428 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))) | |
| 3 | 1, 2 | eqeq12d 2751 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → ((ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))))) |
| 4 | lnopunilem.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 5 | lnopunilem.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 6 | lnopunilem.3 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 7 | lnopunilem.4 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 8 | 0cn 11227 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 9 | 8 | elimel 4570 | . . . . 5 ⊢ if(𝑦 ∈ ℂ, 𝑦, 0) ∈ ℂ |
| 10 | 4, 5, 6, 7, 9 | lnopunilem1 31991 | . . . 4 ⊢ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))) |
| 11 | 3, 10 | dedth 4559 | . . 3 ⊢ (𝑦 ∈ ℂ → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵)))) |
| 12 | 11 | rgen 3053 | . 2 ⊢ ∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) |
| 13 | 4 | lnopfi 31950 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
| 14 | 13 | ffvelcdmi 7073 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
| 15 | 6, 14 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐴) ∈ ℋ |
| 16 | 13 | ffvelcdmi 7073 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
| 17 | 7, 16 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐵) ∈ ℋ |
| 18 | 15, 17 | hicli 31062 | . . 3 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
| 19 | 6, 7 | hicli 31062 | . . 3 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 20 | recan 15355 | . . 3 ⊢ ((((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) | |
| 21 | 18, 19, 20 | mp2an 692 | . 2 ⊢ (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| 22 | 12, 21 | mpbi 230 | 1 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ifcif 4500 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 · cmul 11134 ℜcre 15116 ℋchba 30900 ·ih csp 30903 normℎcno 30904 LinOpclo 30928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-hilex 30980 ax-hfvadd 30981 ax-hv0cl 30984 ax-hfvmul 30986 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-hnorm 30949 df-lnop 31822 |
| This theorem is referenced by: lnopunii 31993 |
| Copyright terms: Public domain | W3C validator |