| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnopunii 31948. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopunilem.1 | ⊢ 𝑇 ∈ LinOp |
| lnopunilem.2 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| lnopunilem.3 | ⊢ 𝐴 ∈ ℋ |
| lnopunilem.4 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| lnopunilem2 | ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7413 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) | |
| 2 | fvoveq1 7413 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))) | |
| 3 | 1, 2 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → ((ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))))) |
| 4 | lnopunilem.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 5 | lnopunilem.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 6 | lnopunilem.3 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 7 | lnopunilem.4 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 8 | 0cn 11173 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 9 | 8 | elimel 4561 | . . . . 5 ⊢ if(𝑦 ∈ ℂ, 𝑦, 0) ∈ ℂ |
| 10 | 4, 5, 6, 7, 9 | lnopunilem1 31946 | . . . 4 ⊢ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))) |
| 11 | 3, 10 | dedth 4550 | . . 3 ⊢ (𝑦 ∈ ℂ → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵)))) |
| 12 | 11 | rgen 3047 | . 2 ⊢ ∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) |
| 13 | 4 | lnopfi 31905 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
| 14 | 13 | ffvelcdmi 7058 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
| 15 | 6, 14 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐴) ∈ ℋ |
| 16 | 13 | ffvelcdmi 7058 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
| 17 | 7, 16 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐵) ∈ ℋ |
| 18 | 15, 17 | hicli 31017 | . . 3 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
| 19 | 6, 7 | hicli 31017 | . . 3 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 20 | recan 15310 | . . 3 ⊢ ((((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) | |
| 21 | 18, 19, 20 | mp2an 692 | . 2 ⊢ (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| 22 | 12, 21 | mpbi 230 | 1 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ifcif 4491 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 ℜcre 15070 ℋchba 30855 ·ih csp 30858 normℎcno 30859 LinOpclo 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-hnorm 30904 df-lnop 31777 |
| This theorem is referenced by: lnopunii 31948 |
| Copyright terms: Public domain | W3C validator |