| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnopunii 31960. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopunilem.1 | ⊢ 𝑇 ∈ LinOp |
| lnopunilem.2 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| lnopunilem.3 | ⊢ 𝐴 ∈ ℋ |
| lnopunilem.4 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| lnopunilem2 | ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7372 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) | |
| 2 | fvoveq1 7372 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))) | |
| 3 | 1, 2 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → ((ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))))) |
| 4 | lnopunilem.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 5 | lnopunilem.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 6 | lnopunilem.3 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 7 | lnopunilem.4 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 8 | 0cn 11107 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 9 | 8 | elimel 4546 | . . . . 5 ⊢ if(𝑦 ∈ ℂ, 𝑦, 0) ∈ ℂ |
| 10 | 4, 5, 6, 7, 9 | lnopunilem1 31958 | . . . 4 ⊢ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))) |
| 11 | 3, 10 | dedth 4535 | . . 3 ⊢ (𝑦 ∈ ℂ → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵)))) |
| 12 | 11 | rgen 3046 | . 2 ⊢ ∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) |
| 13 | 4 | lnopfi 31917 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
| 14 | 13 | ffvelcdmi 7017 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
| 15 | 6, 14 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐴) ∈ ℋ |
| 16 | 13 | ffvelcdmi 7017 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
| 17 | 7, 16 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐵) ∈ ℋ |
| 18 | 15, 17 | hicli 31029 | . . 3 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
| 19 | 6, 7 | hicli 31029 | . . 3 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 20 | recan 15244 | . . 3 ⊢ ((((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) | |
| 21 | 18, 19, 20 | mp2an 692 | . 2 ⊢ (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| 22 | 12, 21 | mpbi 230 | 1 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4476 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 · cmul 11014 ℜcre 15004 ℋchba 30867 ·ih csp 30870 normℎcno 30871 LinOpclo 30895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-hilex 30947 ax-hfvadd 30948 ax-hv0cl 30951 ax-hfvmul 30953 ax-hvmul0 30958 ax-hfi 31027 ax-his1 31030 ax-his2 31031 ax-his3 31032 ax-his4 31033 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-hnorm 30916 df-lnop 31789 |
| This theorem is referenced by: lnopunii 31960 |
| Copyright terms: Public domain | W3C validator |