| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnopunii 31992. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopunilem.1 | ⊢ 𝑇 ∈ LinOp |
| lnopunilem.2 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| lnopunilem.3 | ⊢ 𝐴 ∈ ℋ |
| lnopunilem.4 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| lnopunilem2 | ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7392 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) | |
| 2 | fvoveq1 7392 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))) | |
| 3 | 1, 2 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → ((ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))))) |
| 4 | lnopunilem.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 5 | lnopunilem.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 6 | lnopunilem.3 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 7 | lnopunilem.4 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 8 | 0cn 11144 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 9 | 8 | elimel 4554 | . . . . 5 ⊢ if(𝑦 ∈ ℂ, 𝑦, 0) ∈ ℂ |
| 10 | 4, 5, 6, 7, 9 | lnopunilem1 31990 | . . . 4 ⊢ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))) |
| 11 | 3, 10 | dedth 4543 | . . 3 ⊢ (𝑦 ∈ ℂ → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵)))) |
| 12 | 11 | rgen 3046 | . 2 ⊢ ∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) |
| 13 | 4 | lnopfi 31949 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
| 14 | 13 | ffvelcdmi 7037 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
| 15 | 6, 14 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐴) ∈ ℋ |
| 16 | 13 | ffvelcdmi 7037 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
| 17 | 7, 16 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐵) ∈ ℋ |
| 18 | 15, 17 | hicli 31061 | . . 3 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
| 19 | 6, 7 | hicli 31061 | . . 3 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 20 | recan 15280 | . . 3 ⊢ ((((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) | |
| 21 | 18, 19, 20 | mp2an 692 | . 2 ⊢ (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| 22 | 12, 21 | mpbi 230 | 1 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4484 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 0cc0 11046 · cmul 11051 ℜcre 15040 ℋchba 30899 ·ih csp 30902 normℎcno 30903 LinOpclo 30927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-hnorm 30948 df-lnop 31821 |
| This theorem is referenced by: lnopunii 31992 |
| Copyright terms: Public domain | W3C validator |