| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnopunii 31992. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopunilem.1 | ⊢ 𝑇 ∈ LinOp |
| lnopunilem.2 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| lnopunilem.3 | ⊢ 𝐴 ∈ ℋ |
| lnopunilem.4 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| lnopunilem2 | ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7369 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) | |
| 2 | fvoveq1 7369 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))) | |
| 3 | 1, 2 | eqeq12d 2747 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → ((ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))))) |
| 4 | lnopunilem.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 5 | lnopunilem.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 6 | lnopunilem.3 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 7 | lnopunilem.4 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 8 | 0cn 11104 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 9 | 8 | elimel 4542 | . . . . 5 ⊢ if(𝑦 ∈ ℂ, 𝑦, 0) ∈ ℂ |
| 10 | 4, 5, 6, 7, 9 | lnopunilem1 31990 | . . . 4 ⊢ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))) |
| 11 | 3, 10 | dedth 4531 | . . 3 ⊢ (𝑦 ∈ ℂ → (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵)))) |
| 12 | 11 | rgen 3049 | . 2 ⊢ ∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) |
| 13 | 4 | lnopfi 31949 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
| 14 | 13 | ffvelcdmi 7016 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
| 15 | 6, 14 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐴) ∈ ℋ |
| 16 | 13 | ffvelcdmi 7016 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
| 17 | 7, 16 | ax-mp 5 | . . . 4 ⊢ (𝑇‘𝐵) ∈ ℋ |
| 18 | 15, 17 | hicli 31061 | . . 3 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
| 19 | 6, 7 | hicli 31061 | . . 3 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 20 | recan 15244 | . . 3 ⊢ ((((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) | |
| 21 | 18, 19, 20 | mp2an 692 | . 2 ⊢ (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| 22 | 12, 21 | mpbi 230 | 1 ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ifcif 4472 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 · cmul 11011 ℜcre 15004 ℋchba 30899 ·ih csp 30902 normℎcno 30903 LinOpclo 30927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-hnorm 30948 df-lnop 31821 |
| This theorem is referenced by: lnopunii 31992 |
| Copyright terms: Public domain | W3C validator |