| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > honegsubi | Structured version Visualization version GIF version | ||
| Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hodseq.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hodseq.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| honegsubi | ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hodseq.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | neg1cn 12121 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 3 | hodseq.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
| 4 | homulcl 31760 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . 6 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
| 6 | hosval 31741 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ (-1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) | |
| 7 | 1, 5, 6 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) |
| 8 | 1 | ffvelcdmi 7025 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 9 | 3 | ffvelcdmi 7025 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 10 | hvsubval 31017 | . . . . . . 7 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) |
| 12 | homval 31742 | . . . . . . . 8 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑥) = (-1 ·ℎ (𝑇‘𝑥))) | |
| 13 | 2, 3, 12 | mp3an12 1453 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((-1 ·op 𝑇)‘𝑥) = (-1 ·ℎ (𝑇‘𝑥))) |
| 14 | 13 | oveq2d 7371 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) |
| 15 | 11, 14 | eqtr4d 2771 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) |
| 16 | 7, 15 | eqtr4d 2771 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
| 17 | hodval 31743 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
| 18 | 1, 3, 17 | mp3an12 1453 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
| 19 | 16, 18 | eqtr4d 2771 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥)) |
| 20 | 19 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥) |
| 21 | 1, 5 | hoaddcli 31769 | . . 3 ⊢ (𝑆 +op (-1 ·op 𝑇)): ℋ⟶ ℋ |
| 22 | 1, 3 | hosubcli 31770 | . . 3 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
| 23 | 21, 22 | hoeqi 31762 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥) ↔ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇)) |
| 24 | 20, 23 | mpbi 230 | 1 ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 1c1 11018 -cneg 11356 ℋchba 30920 +ℎ cva 30921 ·ℎ csm 30922 −ℎ cmv 30926 +op chos 30939 ·op chot 30940 −op chod 30941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-hilex 31000 ax-hfvadd 31001 ax-hfvmul 31006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-neg 11358 df-hvsub 30972 df-hosum 31731 df-homul 31732 df-hodif 31733 |
| This theorem is referenced by: honegsub 31800 hosubeq0i 31827 lnophdi 32003 bdophdi 32098 nmoptri2i 32100 |
| Copyright terms: Public domain | W3C validator |