HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  honegsubi Structured version   Visualization version   GIF version

Theorem honegsubi 31774
Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hodseq.2 𝑆: ℋ⟶ ℋ
hodseq.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
honegsubi (𝑆 +op (-1 ·op 𝑇)) = (𝑆op 𝑇)

Proof of Theorem honegsubi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hodseq.2 . . . . . 6 𝑆: ℋ⟶ ℋ
2 neg1cn 12110 . . . . . . 7 -1 ∈ ℂ
3 hodseq.3 . . . . . . 7 𝑇: ℋ⟶ ℋ
4 homulcl 31737 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ)
52, 3, 4mp2an 692 . . . . . 6 (-1 ·op 𝑇): ℋ⟶ ℋ
6 hosval 31718 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ (-1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)))
71, 5, 6mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)))
81ffvelcdmi 7016 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
93ffvelcdmi 7016 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10 hvsubval 30994 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝑥) + (-1 · (𝑇𝑥))))
118, 9, 10syl2anc 584 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝑥) + (-1 · (𝑇𝑥))))
12 homval 31719 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑥) = (-1 · (𝑇𝑥)))
132, 3, 12mp3an12 1453 . . . . . . 7 (𝑥 ∈ ℋ → ((-1 ·op 𝑇)‘𝑥) = (-1 · (𝑇𝑥)))
1413oveq2d 7362 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)) = ((𝑆𝑥) + (-1 · (𝑇𝑥))))
1511, 14eqtr4d 2769 . . . . 5 (𝑥 ∈ ℋ → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)))
167, 15eqtr4d 2769 . . . 4 (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
17 hodval 31720 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
181, 3, 17mp3an12 1453 . . . 4 (𝑥 ∈ ℋ → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
1916, 18eqtr4d 2769 . . 3 (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆op 𝑇)‘𝑥))
2019rgen 3049 . 2 𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆op 𝑇)‘𝑥)
211, 5hoaddcli 31746 . . 3 (𝑆 +op (-1 ·op 𝑇)): ℋ⟶ ℋ
221, 3hosubcli 31747 . . 3 (𝑆op 𝑇): ℋ⟶ ℋ
2321, 22hoeqi 31739 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆op 𝑇)‘𝑥) ↔ (𝑆 +op (-1 ·op 𝑇)) = (𝑆op 𝑇))
2420, 23mpbi 230 1 (𝑆 +op (-1 ·op 𝑇)) = (𝑆op 𝑇)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007  -cneg 11345  chba 30897   + cva 30898   · csm 30899   cmv 30903   +op chos 30916   ·op chot 30917  op chod 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hilex 30977  ax-hfvadd 30978  ax-hfvmul 30983
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-hvsub 30949  df-hosum 31708  df-homul 31709  df-hodif 31710
This theorem is referenced by:  honegsub  31777  hosubeq0i  31804  lnophdi  31980  bdophdi  32075  nmoptri2i  32077
  Copyright terms: Public domain W3C validator