Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > honegsubi | Structured version Visualization version GIF version |
Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hodseq.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hodseq.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
honegsubi | ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hodseq.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | neg1cn 12017 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
3 | hodseq.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
4 | homulcl 30022 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
5 | 2, 3, 4 | mp2an 688 | . . . . . 6 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
6 | hosval 30003 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ (-1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) | |
7 | 1, 5, 6 | mp3an12 1449 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) |
8 | 1 | ffvelrni 6942 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
9 | 3 | ffvelrni 6942 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
10 | hvsubval 29279 | . . . . . . 7 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) | |
11 | 8, 9, 10 | syl2anc 583 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) |
12 | homval 30004 | . . . . . . . 8 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑥) = (-1 ·ℎ (𝑇‘𝑥))) | |
13 | 2, 3, 12 | mp3an12 1449 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((-1 ·op 𝑇)‘𝑥) = (-1 ·ℎ (𝑇‘𝑥))) |
14 | 13 | oveq2d 7271 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) |
15 | 11, 14 | eqtr4d 2781 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) |
16 | 7, 15 | eqtr4d 2781 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
17 | hodval 30005 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
18 | 1, 3, 17 | mp3an12 1449 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
19 | 16, 18 | eqtr4d 2781 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥)) |
20 | 19 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥) |
21 | 1, 5 | hoaddcli 30031 | . . 3 ⊢ (𝑆 +op (-1 ·op 𝑇)): ℋ⟶ ℋ |
22 | 1, 3 | hosubcli 30032 | . . 3 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 30024 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥) ↔ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇)) |
24 | 20, 23 | mpbi 229 | 1 ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 -cneg 11136 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 −ℎ cmv 29188 +op chos 29201 ·op chot 29202 −op chod 29203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hilex 29262 ax-hfvadd 29263 ax-hfvmul 29268 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-hvsub 29234 df-hosum 29993 df-homul 29994 df-hodif 29995 |
This theorem is referenced by: honegsub 30062 hosubeq0i 30089 lnophdi 30265 bdophdi 30360 nmoptri2i 30362 |
Copyright terms: Public domain | W3C validator |