HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  honegsubi Structured version   Visualization version   GIF version

Theorem honegsubi 29244
Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hodseq.2 𝑆: ℋ⟶ ℋ
hodseq.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
honegsubi (𝑆 +op (-1 ·op 𝑇)) = (𝑆op 𝑇)

Proof of Theorem honegsubi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hodseq.2 . . . . . 6 𝑆: ℋ⟶ ℋ
2 neg1cn 11501 . . . . . . 7 -1 ∈ ℂ
3 hodseq.3 . . . . . . 7 𝑇: ℋ⟶ ℋ
4 homulcl 29207 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ)
52, 3, 4mp2an 682 . . . . . 6 (-1 ·op 𝑇): ℋ⟶ ℋ
6 hosval 29188 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ (-1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)))
71, 5, 6mp3an12 1524 . . . . 5 (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)))
81ffvelrni 6624 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
93ffvelrni 6624 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10 hvsubval 28462 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝑥) + (-1 · (𝑇𝑥))))
118, 9, 10syl2anc 579 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝑥) + (-1 · (𝑇𝑥))))
12 homval 29189 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑥) = (-1 · (𝑇𝑥)))
132, 3, 12mp3an12 1524 . . . . . . 7 (𝑥 ∈ ℋ → ((-1 ·op 𝑇)‘𝑥) = (-1 · (𝑇𝑥)))
1413oveq2d 6940 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)) = ((𝑆𝑥) + (-1 · (𝑇𝑥))))
1511, 14eqtr4d 2817 . . . . 5 (𝑥 ∈ ℋ → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝑥) + ((-1 ·op 𝑇)‘𝑥)))
167, 15eqtr4d 2817 . . . 4 (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
17 hodval 29190 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
181, 3, 17mp3an12 1524 . . . 4 (𝑥 ∈ ℋ → ((𝑆op 𝑇)‘𝑥) = ((𝑆𝑥) − (𝑇𝑥)))
1916, 18eqtr4d 2817 . . 3 (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆op 𝑇)‘𝑥))
2019rgen 3104 . 2 𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆op 𝑇)‘𝑥)
211, 5hoaddcli 29216 . . 3 (𝑆 +op (-1 ·op 𝑇)): ℋ⟶ ℋ
221, 3hosubcli 29217 . . 3 (𝑆op 𝑇): ℋ⟶ ℋ
2321, 22hoeqi 29209 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆op 𝑇)‘𝑥) ↔ (𝑆 +op (-1 ·op 𝑇)) = (𝑆op 𝑇))
2420, 23mpbi 222 1 (𝑆 +op (-1 ·op 𝑇)) = (𝑆op 𝑇)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2107  wral 3090  wf 6133  cfv 6137  (class class class)co 6924  cc 10272  1c1 10275  -cneg 10609  chba 28365   + cva 28366   · csm 28367   cmv 28371   +op chos 28384   ·op chot 28385  op chod 28386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-hilex 28445  ax-hfvadd 28446  ax-hfvmul 28451
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-ltxr 10418  df-sub 10610  df-neg 10611  df-hvsub 28417  df-hosum 29178  df-homul 29179  df-hodif 29180
This theorem is referenced by:  honegsub  29247  hosubeq0i  29274  lnophdi  29450  bdophdi  29545  nmoptri2i  29547
  Copyright terms: Public domain W3C validator