| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjscji | Structured version Visualization version GIF version | ||
| Description: The projection of orthogonal subspaces is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjco.1 | ⊢ 𝐺 ∈ Cℋ |
| pjco.2 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjscji | ⊢ (𝐺 ⊆ (⊥‘𝐻) → (projℎ‘(𝐺 ∨ℋ 𝐻)) = ((projℎ‘𝐺) +op (projℎ‘𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjco.1 | . . . . . 6 ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjco.2 | . . . . . 6 ⊢ 𝐻 ∈ Cℋ | |
| 3 | pjcjt2 31636 | . . . . . 6 ⊢ ((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ) → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝑥) = (((projℎ‘𝐺)‘𝑥) +ℎ ((projℎ‘𝐻)‘𝑥)))) | |
| 4 | 1, 2, 3 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝑥) = (((projℎ‘𝐺)‘𝑥) +ℎ ((projℎ‘𝐻)‘𝑥)))) |
| 5 | 4 | impcom 407 | . . . 4 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ 𝑥 ∈ ℋ) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝑥) = (((projℎ‘𝐺)‘𝑥) +ℎ ((projℎ‘𝐻)‘𝑥))) |
| 6 | 1 | pjfi 31648 | . . . . . 6 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
| 7 | 2 | pjfi 31648 | . . . . . 6 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
| 8 | hosval 31684 | . . . . . 6 ⊢ (((projℎ‘𝐺): ℋ⟶ ℋ ∧ (projℎ‘𝐻): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) +op (projℎ‘𝐻))‘𝑥) = (((projℎ‘𝐺)‘𝑥) +ℎ ((projℎ‘𝐻)‘𝑥))) | |
| 9 | 6, 7, 8 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) +op (projℎ‘𝐻))‘𝑥) = (((projℎ‘𝐺)‘𝑥) +ℎ ((projℎ‘𝐻)‘𝑥))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) +op (projℎ‘𝐻))‘𝑥) = (((projℎ‘𝐺)‘𝑥) +ℎ ((projℎ‘𝐻)‘𝑥))) |
| 11 | 5, 10 | eqtr4d 2767 | . . 3 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ 𝑥 ∈ ℋ) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝑥) = (((projℎ‘𝐺) +op (projℎ‘𝐻))‘𝑥)) |
| 12 | 11 | ralrimiva 3121 | . 2 ⊢ (𝐺 ⊆ (⊥‘𝐻) → ∀𝑥 ∈ ℋ ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝑥) = (((projℎ‘𝐺) +op (projℎ‘𝐻))‘𝑥)) |
| 13 | 1, 2 | chjcli 31401 | . . . 4 ⊢ (𝐺 ∨ℋ 𝐻) ∈ Cℋ |
| 14 | 13 | pjfi 31648 | . . 3 ⊢ (projℎ‘(𝐺 ∨ℋ 𝐻)): ℋ⟶ ℋ |
| 15 | 6, 7 | hoaddcli 31712 | . . 3 ⊢ ((projℎ‘𝐺) +op (projℎ‘𝐻)): ℋ⟶ ℋ |
| 16 | 14, 15 | hoeqi 31705 | . 2 ⊢ (∀𝑥 ∈ ℋ ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝑥) = (((projℎ‘𝐺) +op (projℎ‘𝐻))‘𝑥) ↔ (projℎ‘(𝐺 ∨ℋ 𝐻)) = ((projℎ‘𝐺) +op (projℎ‘𝐻))) |
| 17 | 12, 16 | sylib 218 | 1 ⊢ (𝐺 ⊆ (⊥‘𝐻) → (projℎ‘(𝐺 ∨ℋ 𝐻)) = ((projℎ‘𝐺) +op (projℎ‘𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℋchba 30863 +ℎ cva 30864 Cℋ cch 30873 ⊥cort 30874 ∨ℋ chj 30877 projℎcpjh 30881 +op chos 30882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 ax-hcompl 31146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-cn 23112 df-cnp 23113 df-lm 23114 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-dip 30645 df-ssp 30666 df-ph 30757 df-cbn 30807 df-hnorm 30912 df-hba 30913 df-hvsub 30915 df-hlim 30916 df-hcau 30917 df-sh 31151 df-ch 31165 df-oc 31196 df-ch0 31197 df-shs 31252 df-chj 31254 df-pjh 31339 df-hosum 31674 |
| This theorem is referenced by: pjssumi 32115 pjclem1 32139 pjci 32144 |
| Copyright terms: Public domain | W3C validator |