HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodsi Structured version   Visualization version   GIF version

Theorem hodsi 31753
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hodsi ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)

Proof of Theorem hodsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
21ffvelcdmi 7016 . . . . 5 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
3 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
43ffvelcdmi 7016 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
5 hods.3 . . . . . 6 𝑇: ℋ⟶ ℋ
65ffvelcdmi 7016 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
7 hvsubadd 31055 . . . . 5 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
82, 4, 6, 7syl3anc 1373 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
9 hodval 31720 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
101, 3, 9mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
1110eqeq1d 2733 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥)))
12 hosval 31718 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
133, 5, 12mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1413eqeq1d 2733 . . . 4 (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
158, 11, 143bitr4d 311 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥)))
1615ralbiia 3076 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥))
171, 3hosubcli 31747 . . 3 (𝑅op 𝑆): ℋ⟶ ℋ
1817, 5hoeqi 31739 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ (𝑅op 𝑆) = 𝑇)
193, 5hoaddcli 31746 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
2019, 1hoeqi 31739 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ (𝑆 +op 𝑇) = 𝑅)
2116, 18, 203bitr3i 301 1 ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  chba 30897   + cva 30898   cmv 30903   +op chos 30916  op chod 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hilex 30977  ax-hfvadd 30978  ax-hvcom 30979  ax-hvass 30980  ax-hv0cl 30981  ax-hvaddid 30982  ax-hfvmul 30983  ax-hvmulid 30984  ax-hvdistr2 30987  ax-hvmul0 30988
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-hvsub 30949  df-hosum 31708  df-hodif 31710
This theorem is referenced by:  hodidi  31765  hodseqi  31772  ho0subi  31773  hosd1i  31800  pjoci  32158
  Copyright terms: Public domain W3C validator