![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hodsi | Structured version Visualization version GIF version |
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hodsi | ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | 1 | ffvelcdmi 7085 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘𝑥) ∈ ℋ) |
3 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
4 | 3 | ffvelcdmi 7085 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
5 | hods.3 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
6 | 5 | ffvelcdmi 7085 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
7 | hvsubadd 30325 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ ℋ ∧ (𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) | |
8 | 2, 4, 6, 7 | syl3anc 1371 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
9 | hodval 30990 | . . . . . 6 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) | |
10 | 1, 3, 9 | mp3an12 1451 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) |
11 | 10 | eqeq1d 2734 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥))) |
12 | hosval 30988 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
13 | 3, 5, 12 | mp3an12 1451 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
14 | 13 | eqeq1d 2734 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
15 | 8, 11, 14 | 3bitr4d 310 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥))) |
16 | 15 | ralbiia 3091 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥)) |
17 | 1, 3 | hosubcli 31017 | . . 3 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
18 | 17, 5 | hoeqi 31009 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ (𝑅 −op 𝑆) = 𝑇) |
19 | 3, 5 | hoaddcli 31016 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
20 | 19, 1 | hoeqi 31009 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ (𝑆 +op 𝑇) = 𝑅) |
21 | 16, 18, 20 | 3bitr3i 300 | 1 ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℋchba 30167 +ℎ cva 30168 −ℎ cmv 30173 +op chos 30186 −op chod 30188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-hilex 30247 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvdistr2 30257 ax-hvmul0 30258 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-neg 11446 df-hvsub 30219 df-hosum 30978 df-hodif 30980 |
This theorem is referenced by: hodidi 31035 hodseqi 31042 ho0subi 31043 hosd1i 31070 pjoci 31428 |
Copyright terms: Public domain | W3C validator |