| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodsi | Structured version Visualization version GIF version | ||
| Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hodsi | ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7055 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘𝑥) ∈ ℋ) |
| 3 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7055 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 5 | hods.3 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 5 | ffvelcdmi 7055 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 7 | hvsubadd 31006 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ ℋ ∧ (𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 9 | hodval 31671 | . . . . . 6 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) | |
| 10 | 1, 3, 9 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) |
| 11 | 10 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥))) |
| 12 | hosval 31669 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
| 13 | 3, 5, 12 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 15 | 8, 11, 14 | 3bitr4d 311 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥))) |
| 16 | 15 | ralbiia 3073 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥)) |
| 17 | 1, 3 | hosubcli 31698 | . . 3 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
| 18 | 17, 5 | hoeqi 31690 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ (𝑅 −op 𝑆) = 𝑇) |
| 19 | 3, 5 | hoaddcli 31697 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 20 | 19, 1 | hoeqi 31690 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ (𝑆 +op 𝑇) = 𝑅) |
| 21 | 16, 18, 20 | 3bitr3i 301 | 1 ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 +ℎ cva 30849 −ℎ cmv 30854 +op chos 30867 −op chod 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvdistr2 30938 ax-hvmul0 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-hvsub 30900 df-hosum 31659 df-hodif 31661 |
| This theorem is referenced by: hodidi 31716 hodseqi 31723 ho0subi 31724 hosd1i 31751 pjoci 32109 |
| Copyright terms: Public domain | W3C validator |