| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodsi | Structured version Visualization version GIF version | ||
| Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hodsi | ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7058 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘𝑥) ∈ ℋ) |
| 3 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7058 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 5 | hods.3 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 5 | ffvelcdmi 7058 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 7 | hvsubadd 31013 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ ℋ ∧ (𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 9 | hodval 31678 | . . . . . 6 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) | |
| 10 | 1, 3, 9 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) |
| 11 | 10 | eqeq1d 2732 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥))) |
| 12 | hosval 31676 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
| 13 | 3, 5, 12 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 14 | 13 | eqeq1d 2732 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 15 | 8, 11, 14 | 3bitr4d 311 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥))) |
| 16 | 15 | ralbiia 3074 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥)) |
| 17 | 1, 3 | hosubcli 31705 | . . 3 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
| 18 | 17, 5 | hoeqi 31697 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ (𝑅 −op 𝑆) = 𝑇) |
| 19 | 3, 5 | hoaddcli 31704 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 20 | 19, 1 | hoeqi 31697 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ (𝑆 +op 𝑇) = 𝑅) |
| 21 | 16, 18, 20 | 3bitr3i 301 | 1 ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 +ℎ cva 30856 −ℎ cmv 30861 +op chos 30874 −op chod 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-hvsub 30907 df-hosum 31666 df-hodif 31668 |
| This theorem is referenced by: hodidi 31723 hodseqi 31730 ho0subi 31731 hosd1i 31758 pjoci 32116 |
| Copyright terms: Public domain | W3C validator |