| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodsi | Structured version Visualization version GIF version | ||
| Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hodsi | ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7078 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘𝑥) ∈ ℋ) |
| 3 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7078 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 5 | hods.3 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 5 | ffvelcdmi 7078 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 7 | hvsubadd 31063 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ ℋ ∧ (𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 9 | hodval 31728 | . . . . . 6 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) | |
| 10 | 1, 3, 9 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) |
| 11 | 10 | eqeq1d 2738 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥))) |
| 12 | hosval 31726 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
| 13 | 3, 5, 12 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 14 | 13 | eqeq1d 2738 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 15 | 8, 11, 14 | 3bitr4d 311 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥))) |
| 16 | 15 | ralbiia 3081 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥)) |
| 17 | 1, 3 | hosubcli 31755 | . . 3 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
| 18 | 17, 5 | hoeqi 31747 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ (𝑅 −op 𝑆) = 𝑇) |
| 19 | 3, 5 | hoaddcli 31754 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 20 | 19, 1 | hoeqi 31747 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ (𝑆 +op 𝑇) = 𝑅) |
| 21 | 16, 18, 20 | 3bitr3i 301 | 1 ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℋchba 30905 +ℎ cva 30906 −ℎ cmv 30911 +op chos 30924 −op chod 30926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvdistr2 30995 ax-hvmul0 30996 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-hvsub 30957 df-hosum 31716 df-hodif 31718 |
| This theorem is referenced by: hodidi 31773 hodseqi 31780 ho0subi 31781 hosd1i 31808 pjoci 32166 |
| Copyright terms: Public domain | W3C validator |