HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodsi Structured version   Visualization version   GIF version

Theorem hodsi 31584
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hodsi ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)

Proof of Theorem hodsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
21ffvelcdmi 7093 . . . . 5 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
3 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
43ffvelcdmi 7093 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
5 hods.3 . . . . . 6 𝑇: ℋ⟶ ℋ
65ffvelcdmi 7093 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
7 hvsubadd 30886 . . . . 5 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
82, 4, 6, 7syl3anc 1369 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
9 hodval 31551 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
101, 3, 9mp3an12 1448 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
1110eqeq1d 2730 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥)))
12 hosval 31549 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
133, 5, 12mp3an12 1448 . . . . 5 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1413eqeq1d 2730 . . . 4 (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
158, 11, 143bitr4d 311 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥)))
1615ralbiia 3088 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥))
171, 3hosubcli 31578 . . 3 (𝑅op 𝑆): ℋ⟶ ℋ
1817, 5hoeqi 31570 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ (𝑅op 𝑆) = 𝑇)
193, 5hoaddcli 31577 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
2019, 1hoeqi 31570 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ (𝑆 +op 𝑇) = 𝑅)
2116, 18, 203bitr3i 301 1 ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wral 3058  wf 6544  cfv 6548  (class class class)co 7420  chba 30728   + cva 30729   cmv 30734   +op chos 30747  op chod 30749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-hilex 30808  ax-hfvadd 30809  ax-hvcom 30810  ax-hvass 30811  ax-hv0cl 30812  ax-hvaddid 30813  ax-hfvmul 30814  ax-hvmulid 30815  ax-hvdistr2 30818  ax-hvmul0 30819
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11476  df-neg 11477  df-hvsub 30780  df-hosum 31539  df-hodif 31541
This theorem is referenced by:  hodidi  31596  hodseqi  31603  ho0subi  31604  hosd1i  31631  pjoci  31989
  Copyright terms: Public domain W3C validator