| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodsi | Structured version Visualization version GIF version | ||
| Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hodsi | ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7022 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑅‘𝑥) ∈ ℋ) |
| 3 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7022 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 5 | hods.3 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 5 | ffvelcdmi 7022 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 7 | hvsubadd 31059 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ ℋ ∧ (𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 9 | hodval 31724 | . . . . . 6 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) | |
| 10 | 1, 3, 9 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘𝑥) = ((𝑅‘𝑥) −ℎ (𝑆‘𝑥))) |
| 11 | 10 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑅‘𝑥) −ℎ (𝑆‘𝑥)) = (𝑇‘𝑥))) |
| 12 | hosval 31722 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
| 13 | 3, 5, 12 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 14 | 13 | eqeq1d 2735 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = (𝑅‘𝑥))) |
| 15 | 8, 11, 14 | 3bitr4d 311 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥))) |
| 16 | 15 | ralbiia 3077 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥)) |
| 17 | 1, 3 | hosubcli 31751 | . . 3 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
| 18 | 17, 5 | hoeqi 31743 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑅 −op 𝑆)‘𝑥) = (𝑇‘𝑥) ↔ (𝑅 −op 𝑆) = 𝑇) |
| 19 | 3, 5 | hoaddcli 31750 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 20 | 19, 1 | hoeqi 31743 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅‘𝑥) ↔ (𝑆 +op 𝑇) = 𝑅) |
| 21 | 16, 18, 20 | 3bitr3i 301 | 1 ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℋchba 30901 +ℎ cva 30902 −ℎ cmv 30907 +op chos 30920 −op chod 30922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 ax-hv0cl 30985 ax-hvaddid 30986 ax-hfvmul 30987 ax-hvmulid 30988 ax-hvdistr2 30991 ax-hvmul0 30992 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-neg 11354 df-hvsub 30953 df-hosum 31712 df-hodif 31714 |
| This theorem is referenced by: hodidi 31769 hodseqi 31776 ho0subi 31777 hosd1i 31804 pjoci 32162 |
| Copyright terms: Public domain | W3C validator |