Step | Hyp | Ref
| Expression |
1 | | resssetc.d |
. . . . . 6
⊢ 𝐷 = (SetCat‘𝑉) |
2 | | resssetc.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑊) |
3 | | resssetc.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
4 | 2, 3 | ssexd 5248 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ V) |
5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑉 ∈ V) |
6 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
7 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
8 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) |
9 | 1, 5, 6, 7, 8 | setchom 17795 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑦 ↑m 𝑥)) |
10 | | resssetc.c |
. . . . . 6
⊢ 𝐶 = (SetCat‘𝑈) |
11 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑈 ∈ 𝑊) |
12 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
13 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑉 ⊆ 𝑈) |
14 | 13, 7 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑈) |
15 | 13, 8 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑈) |
16 | 10, 11, 12, 14, 15 | setchom 17795 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑦 ↑m 𝑥)) |
17 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐶 ↾s 𝑉) = (𝐶 ↾s 𝑉) |
18 | 17, 12 | resshom 17129 |
. . . . . . 7
⊢ (𝑉 ∈ V → (Hom
‘𝐶) = (Hom
‘(𝐶
↾s 𝑉))) |
19 | 4, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶 ↾s 𝑉))) |
20 | 19 | oveqdr 7303 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦)) |
21 | 9, 16, 20 | 3eqtr2rd 2785 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
22 | 21 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
23 | | eqid 2738 |
. . . 4
⊢ (Hom
‘(𝐶
↾s 𝑉)) =
(Hom ‘(𝐶
↾s 𝑉)) |
24 | 10, 2 | setcbas 17793 |
. . . . . 6
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
25 | 3, 24 | sseqtrd 3961 |
. . . . 5
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐶)) |
26 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
27 | 17, 26 | ressbas2 16949 |
. . . . 5
⊢ (𝑉 ⊆ (Base‘𝐶) → 𝑉 = (Base‘(𝐶 ↾s 𝑉))) |
28 | 25, 27 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘(𝐶 ↾s 𝑉))) |
29 | 1, 4 | setcbas 17793 |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝐷)) |
30 | 23, 6, 28, 29 | homfeq 17403 |
. . 3
⊢ (𝜑 → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))) |
31 | 22, 30 | mpbird 256 |
. 2
⊢ (𝜑 → (Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷)) |
32 | 4 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V) |
33 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐷) =
(comp‘𝐷) |
34 | | simplr1 1214 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ 𝑉) |
35 | | simplr2 1215 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ 𝑉) |
36 | | simplr3 1216 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ 𝑉) |
37 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)) |
38 | 1, 32, 6, 34, 35 | elsetchom 17796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ 𝑓:𝑥⟶𝑦)) |
39 | 37, 38 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓:𝑥⟶𝑦) |
40 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
41 | 1, 32, 6, 35, 36 | elsetchom 17796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↔ 𝑔:𝑦⟶𝑧)) |
42 | 40, 41 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔:𝑦⟶𝑧) |
43 | 1, 32, 33, 34, 35, 36, 39, 42 | setcco 17798 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
44 | 2 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈 ∈ 𝑊) |
45 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐶) =
(comp‘𝐶) |
46 | 3 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ⊆ 𝑈) |
47 | 46, 34 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ 𝑈) |
48 | 46, 35 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ 𝑈) |
49 | 46, 36 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ 𝑈) |
50 | 10, 44, 45, 47, 48, 49, 39, 42 | setcco 17798 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
51 | 17, 45 | ressco 17130 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ V →
(comp‘𝐶) =
(comp‘(𝐶
↾s 𝑉))) |
52 | 4, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (comp‘𝐶) = (comp‘(𝐶 ↾s 𝑉))) |
53 | 52 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶 ↾s 𝑉))) |
54 | 53 | oveqd 7292 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)) |
55 | 54 | oveqd 7292 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
56 | 43, 50, 55 | 3eqtr2d 2784 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
57 | 56 | ralrimivva 3123 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
58 | 57 | ralrimivvva 3127 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
59 | | eqid 2738 |
. . . . 5
⊢
(comp‘(𝐶
↾s 𝑉)) =
(comp‘(𝐶
↾s 𝑉)) |
60 | 31 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐷) =
(Homf ‘(𝐶 ↾s 𝑉))) |
61 | 33, 59, 6, 29, 28, 60 | comfeq 17415 |
. . . 4
⊢ (𝜑 →
((compf‘𝐷) = (compf‘(𝐶 ↾s 𝑉)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓))) |
62 | 58, 61 | mpbird 256 |
. . 3
⊢ (𝜑 →
(compf‘𝐷) = (compf‘(𝐶 ↾s 𝑉))) |
63 | 62 | eqcomd 2744 |
. 2
⊢ (𝜑 →
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷)) |
64 | 31, 63 | jca 512 |
1
⊢ (𝜑 → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) |