MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssetc Structured version   Visualization version   GIF version

Theorem resssetc 18090
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCatβ€˜π‘ˆ categories for different π‘ˆ are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐢 = (SetCatβ€˜π‘ˆ)
resssetc.d 𝐷 = (SetCatβ€˜π‘‰)
resssetc.1 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
resssetc.2 (πœ‘ β†’ 𝑉 βŠ† π‘ˆ)
Assertion
Ref Expression
resssetc (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ∧ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·)))

Proof of Theorem resssetc
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resssetc.d . . . . . 6 𝐷 = (SetCatβ€˜π‘‰)
2 resssetc.1 . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
3 resssetc.2 . . . . . . . 8 (πœ‘ β†’ 𝑉 βŠ† π‘ˆ)
42, 3ssexd 5328 . . . . . . 7 (πœ‘ β†’ 𝑉 ∈ V)
54adantr 479 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑉 ∈ V)
6 eqid 2728 . . . . . 6 (Hom β€˜π·) = (Hom β€˜π·)
7 simprl 769 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ π‘₯ ∈ 𝑉)
8 simprr 771 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑦 ∈ 𝑉)
91, 5, 6, 7, 8setchom 18078 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜π·)𝑦) = (𝑦 ↑m π‘₯))
10 resssetc.c . . . . . 6 𝐢 = (SetCatβ€˜π‘ˆ)
112adantr 479 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ π‘ˆ ∈ π‘Š)
12 eqid 2728 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
133adantr 479 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑉 βŠ† π‘ˆ)
1413, 7sseldd 3983 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ π‘₯ ∈ π‘ˆ)
1513, 8sseldd 3983 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑦 ∈ π‘ˆ)
1610, 11, 12, 14, 15setchom 18078 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜πΆ)𝑦) = (𝑦 ↑m π‘₯))
17 eqid 2728 . . . . . . . 8 (𝐢 β†Ύs 𝑉) = (𝐢 β†Ύs 𝑉)
1817, 12resshom 17409 . . . . . . 7 (𝑉 ∈ V β†’ (Hom β€˜πΆ) = (Hom β€˜(𝐢 β†Ύs 𝑉)))
194, 18syl 17 . . . . . 6 (πœ‘ β†’ (Hom β€˜πΆ) = (Hom β€˜(𝐢 β†Ύs 𝑉)))
2019oveqdr 7454 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜πΆ)𝑦) = (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦))
219, 16, 203eqtr2rd 2775 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦))
2221ralrimivva 3198 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦))
23 eqid 2728 . . . 4 (Hom β€˜(𝐢 β†Ύs 𝑉)) = (Hom β€˜(𝐢 β†Ύs 𝑉))
2410, 2setcbas 18076 . . . . . 6 (πœ‘ β†’ π‘ˆ = (Baseβ€˜πΆ))
253, 24sseqtrd 4022 . . . . 5 (πœ‘ β†’ 𝑉 βŠ† (Baseβ€˜πΆ))
26 eqid 2728 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
2717, 26ressbas2 17227 . . . . 5 (𝑉 βŠ† (Baseβ€˜πΆ) β†’ 𝑉 = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
2825, 27syl 17 . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
291, 4setcbas 18076 . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜π·))
3023, 6, 28, 29homfeq 17683 . . 3 (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦)))
3122, 30mpbird 256 . 2 (πœ‘ β†’ (Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·))
324ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑉 ∈ V)
33 eqid 2728 . . . . . . . 8 (compβ€˜π·) = (compβ€˜π·)
34 simplr1 1212 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ 𝑉)
35 simplr2 1213 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ 𝑉)
36 simplr3 1214 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ 𝑉)
37 simprl 769 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦))
381, 32, 6, 34, 35elsetchom 18079 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ↔ 𝑓:π‘₯βŸΆπ‘¦))
3937, 38mpbid 231 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑓:π‘₯βŸΆπ‘¦)
40 simprr 771 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))
411, 32, 6, 35, 36elsetchom 18079 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔 ∈ (𝑦(Hom β€˜π·)𝑧) ↔ 𝑔:π‘¦βŸΆπ‘§))
4240, 41mpbid 231 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑔:π‘¦βŸΆπ‘§)
431, 32, 33, 34, 35, 36, 39, 42setcco 18081 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔 ∘ 𝑓))
442ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘ˆ ∈ π‘Š)
45 eqid 2728 . . . . . . . 8 (compβ€˜πΆ) = (compβ€˜πΆ)
463ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑉 βŠ† π‘ˆ)
4746, 34sseldd 3983 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ π‘ˆ)
4846, 35sseldd 3983 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ π‘ˆ)
4946, 36sseldd 3983 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ π‘ˆ)
5010, 44, 45, 47, 48, 49, 39, 42setcco 18081 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔 ∘ 𝑓))
5117, 45ressco 17410 . . . . . . . . . . 11 (𝑉 ∈ V β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
524, 51syl 17 . . . . . . . . . 10 (πœ‘ β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
5352ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
5453oveqd 7443 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧) = (⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧))
5554oveqd 7443 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
5643, 50, 553eqtr2d 2774 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
5756ralrimivva 3198 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) β†’ βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
5857ralrimivvva 3201 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 βˆ€π‘§ ∈ 𝑉 βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
59 eqid 2728 . . . . 5 (compβ€˜(𝐢 β†Ύs 𝑉)) = (compβ€˜(𝐢 β†Ύs 𝑉))
6031eqcomd 2734 . . . . 5 (πœ‘ β†’ (Homf β€˜π·) = (Homf β€˜(𝐢 β†Ύs 𝑉)))
6133, 59, 6, 29, 28, 60comfeq 17695 . . . 4 (πœ‘ β†’ ((compfβ€˜π·) = (compfβ€˜(𝐢 β†Ύs 𝑉)) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 βˆ€π‘§ ∈ 𝑉 βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓)))
6258, 61mpbird 256 . . 3 (πœ‘ β†’ (compfβ€˜π·) = (compfβ€˜(𝐢 β†Ύs 𝑉)))
6362eqcomd 2734 . 2 (πœ‘ β†’ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·))
6431, 63jca 510 1 (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ∧ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058  Vcvv 3473   βŠ† wss 3949  βŸ¨cop 4638   ∘ ccom 5686  βŸΆwf 6549  β€˜cfv 6553  (class class class)co 7426   ↑m cmap 8853  Basecbs 17189   β†Ύs cress 17218  Hom chom 17253  compcco 17254  Homf chomf 17655  compfccomf 17656  SetCatcsetc 18073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-map 8855  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-5 12318  df-6 12319  df-7 12320  df-8 12321  df-9 12322  df-n0 12513  df-z 12599  df-dec 12718  df-uz 12863  df-fz 13527  df-struct 17125  df-sets 17142  df-slot 17160  df-ndx 17172  df-base 17190  df-ress 17219  df-hom 17266  df-cco 17267  df-homf 17659  df-comf 17660  df-setc 18074
This theorem is referenced by:  funcsetcres2  18091
  Copyright terms: Public domain W3C validator