MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssetc Structured version   Visualization version   GIF version

Theorem resssetc 18038
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCatβ€˜π‘ˆ categories for different π‘ˆ are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐢 = (SetCatβ€˜π‘ˆ)
resssetc.d 𝐷 = (SetCatβ€˜π‘‰)
resssetc.1 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
resssetc.2 (πœ‘ β†’ 𝑉 βŠ† π‘ˆ)
Assertion
Ref Expression
resssetc (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ∧ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·)))

Proof of Theorem resssetc
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resssetc.d . . . . . 6 𝐷 = (SetCatβ€˜π‘‰)
2 resssetc.1 . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
3 resssetc.2 . . . . . . . 8 (πœ‘ β†’ 𝑉 βŠ† π‘ˆ)
42, 3ssexd 5323 . . . . . . 7 (πœ‘ β†’ 𝑉 ∈ V)
54adantr 481 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑉 ∈ V)
6 eqid 2732 . . . . . 6 (Hom β€˜π·) = (Hom β€˜π·)
7 simprl 769 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ π‘₯ ∈ 𝑉)
8 simprr 771 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑦 ∈ 𝑉)
91, 5, 6, 7, 8setchom 18026 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜π·)𝑦) = (𝑦 ↑m π‘₯))
10 resssetc.c . . . . . 6 𝐢 = (SetCatβ€˜π‘ˆ)
112adantr 481 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ π‘ˆ ∈ π‘Š)
12 eqid 2732 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
133adantr 481 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑉 βŠ† π‘ˆ)
1413, 7sseldd 3982 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ π‘₯ ∈ π‘ˆ)
1513, 8sseldd 3982 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ 𝑦 ∈ π‘ˆ)
1610, 11, 12, 14, 15setchom 18026 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜πΆ)𝑦) = (𝑦 ↑m π‘₯))
17 eqid 2732 . . . . . . . 8 (𝐢 β†Ύs 𝑉) = (𝐢 β†Ύs 𝑉)
1817, 12resshom 17360 . . . . . . 7 (𝑉 ∈ V β†’ (Hom β€˜πΆ) = (Hom β€˜(𝐢 β†Ύs 𝑉)))
194, 18syl 17 . . . . . 6 (πœ‘ β†’ (Hom β€˜πΆ) = (Hom β€˜(𝐢 β†Ύs 𝑉)))
2019oveqdr 7433 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜πΆ)𝑦) = (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦))
219, 16, 203eqtr2rd 2779 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦))
2221ralrimivva 3200 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦))
23 eqid 2732 . . . 4 (Hom β€˜(𝐢 β†Ύs 𝑉)) = (Hom β€˜(𝐢 β†Ύs 𝑉))
2410, 2setcbas 18024 . . . . . 6 (πœ‘ β†’ π‘ˆ = (Baseβ€˜πΆ))
253, 24sseqtrd 4021 . . . . 5 (πœ‘ β†’ 𝑉 βŠ† (Baseβ€˜πΆ))
26 eqid 2732 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
2717, 26ressbas2 17178 . . . . 5 (𝑉 βŠ† (Baseβ€˜πΆ) β†’ 𝑉 = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
2825, 27syl 17 . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
291, 4setcbas 18024 . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜π·))
3023, 6, 28, 29homfeq 17634 . . 3 (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦)))
3122, 30mpbird 256 . 2 (πœ‘ β†’ (Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·))
324ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑉 ∈ V)
33 eqid 2732 . . . . . . . 8 (compβ€˜π·) = (compβ€˜π·)
34 simplr1 1215 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ 𝑉)
35 simplr2 1216 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ 𝑉)
36 simplr3 1217 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ 𝑉)
37 simprl 769 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦))
381, 32, 6, 34, 35elsetchom 18027 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ↔ 𝑓:π‘₯βŸΆπ‘¦))
3937, 38mpbid 231 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑓:π‘₯βŸΆπ‘¦)
40 simprr 771 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))
411, 32, 6, 35, 36elsetchom 18027 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔 ∈ (𝑦(Hom β€˜π·)𝑧) ↔ 𝑔:π‘¦βŸΆπ‘§))
4240, 41mpbid 231 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑔:π‘¦βŸΆπ‘§)
431, 32, 33, 34, 35, 36, 39, 42setcco 18029 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔 ∘ 𝑓))
442ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘ˆ ∈ π‘Š)
45 eqid 2732 . . . . . . . 8 (compβ€˜πΆ) = (compβ€˜πΆ)
463ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑉 βŠ† π‘ˆ)
4746, 34sseldd 3982 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ π‘ˆ)
4846, 35sseldd 3982 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ π‘ˆ)
4946, 36sseldd 3982 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ π‘ˆ)
5010, 44, 45, 47, 48, 49, 39, 42setcco 18029 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔 ∘ 𝑓))
5117, 45ressco 17361 . . . . . . . . . . 11 (𝑉 ∈ V β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
524, 51syl 17 . . . . . . . . . 10 (πœ‘ β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
5352ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
5453oveqd 7422 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧) = (⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧))
5554oveqd 7422 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
5643, 50, 553eqtr2d 2778 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
5756ralrimivva 3200 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) β†’ βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
5857ralrimivvva 3203 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 βˆ€π‘§ ∈ 𝑉 βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
59 eqid 2732 . . . . 5 (compβ€˜(𝐢 β†Ύs 𝑉)) = (compβ€˜(𝐢 β†Ύs 𝑉))
6031eqcomd 2738 . . . . 5 (πœ‘ β†’ (Homf β€˜π·) = (Homf β€˜(𝐢 β†Ύs 𝑉)))
6133, 59, 6, 29, 28, 60comfeq 17646 . . . 4 (πœ‘ β†’ ((compfβ€˜π·) = (compfβ€˜(𝐢 β†Ύs 𝑉)) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 βˆ€π‘§ ∈ 𝑉 βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓)))
6258, 61mpbird 256 . . 3 (πœ‘ β†’ (compfβ€˜π·) = (compfβ€˜(𝐢 β†Ύs 𝑉)))
6362eqcomd 2738 . 2 (πœ‘ β†’ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·))
6431, 63jca 512 1 (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ∧ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3947  βŸ¨cop 4633   ∘ ccom 5679  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Basecbs 17140   β†Ύs cress 17169  Hom chom 17204  compcco 17205  Homf chomf 17606  compfccomf 17607  SetCatcsetc 18021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-hom 17217  df-cco 17218  df-homf 17610  df-comf 17611  df-setc 18022
This theorem is referenced by:  funcsetcres2  18039
  Copyright terms: Public domain W3C validator