MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssetc Structured version   Visualization version   GIF version

Theorem resssetc 18159
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resssetc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resssetc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resssetc.d . . . . . 6 𝐷 = (SetCat‘𝑉)
2 resssetc.1 . . . . . . . 8 (𝜑𝑈𝑊)
3 resssetc.2 . . . . . . . 8 (𝜑𝑉𝑈)
42, 3ssexd 5342 . . . . . . 7 (𝜑𝑉 ∈ V)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 ∈ V)
6 eqid 2740 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
7 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
8 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
91, 5, 6, 7, 8setchom 18147 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑦m 𝑥))
10 resssetc.c . . . . . 6 𝐶 = (SetCat‘𝑈)
112adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑈𝑊)
12 eqid 2740 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
133adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉𝑈)
1413, 7sseldd 4009 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑈)
1513, 8sseldd 4009 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑈)
1610, 11, 12, 14, 15setchom 18147 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑦m 𝑥))
17 eqid 2740 . . . . . . . 8 (𝐶s 𝑉) = (𝐶s 𝑉)
1817, 12resshom 17478 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
194, 18syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
2019oveqdr 7476 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
219, 16, 203eqtr2rd 2787 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
2221ralrimivva 3208 . . 3 (𝜑 → ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
23 eqid 2740 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
2410, 2setcbas 18145 . . . . . 6 (𝜑𝑈 = (Base‘𝐶))
253, 24sseqtrd 4049 . . . . 5 (𝜑𝑉 ⊆ (Base‘𝐶))
26 eqid 2740 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2717, 26ressbas2 17296 . . . . 5 (𝑉 ⊆ (Base‘𝐶) → 𝑉 = (Base‘(𝐶s 𝑉)))
2825, 27syl 17 . . . 4 (𝜑𝑉 = (Base‘(𝐶s 𝑉)))
291, 4setcbas 18145 . . . 4 (𝜑𝑉 = (Base‘𝐷))
3023, 6, 28, 29homfeq 17752 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
3122, 30mpbird 257 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
324ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
33 eqid 2740 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
34 simplr1 1215 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑉)
35 simplr2 1216 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑉)
36 simplr3 1217 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑉)
37 simprl 770 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
381, 32, 6, 34, 35elsetchom 18148 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ 𝑓:𝑥𝑦))
3937, 38mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓:𝑥𝑦)
40 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
411, 32, 6, 35, 36elsetchom 18148 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↔ 𝑔:𝑦𝑧))
4240, 41mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔:𝑦𝑧)
431, 32, 33, 34, 35, 36, 39, 42setcco 18150 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔𝑓))
442ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
45 eqid 2740 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
463ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉𝑈)
4746, 34sseldd 4009 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑈)
4846, 35sseldd 4009 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑈)
4946, 36sseldd 4009 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑈)
5010, 44, 45, 47, 48, 49, 39, 42setcco 18150 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
5117, 45ressco 17479 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
524, 51syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5352ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5453oveqd 7465 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
5554oveqd 7465 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5643, 50, 553eqtr2d 2786 . . . . . 6 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5756ralrimivva 3208 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5857ralrimivvva 3211 . . . 4 (𝜑 → ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
59 eqid 2740 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
6031eqcomd 2746 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
6133, 59, 6, 29, 28, 60comfeq 17764 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
6258, 61mpbird 257 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
6362eqcomd 2746 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
6431, 63jca 511 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  cop 4654  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  s cress 17287  Hom chom 17322  compcco 17323  Homf chomf 17724  compfccomf 17725  SetCatcsetc 18142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-hom 17335  df-cco 17336  df-homf 17728  df-comf 17729  df-setc 18143
This theorem is referenced by:  funcsetcres2  18160
  Copyright terms: Public domain W3C validator