MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssetc Structured version   Visualization version   GIF version

Theorem resssetc 18001
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resssetc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resssetc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resssetc.d . . . . . 6 𝐷 = (SetCat‘𝑉)
2 resssetc.1 . . . . . . . 8 (𝜑𝑈𝑊)
3 resssetc.2 . . . . . . . 8 (𝜑𝑉𝑈)
42, 3ssexd 5264 . . . . . . 7 (𝜑𝑉 ∈ V)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 ∈ V)
6 eqid 2733 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
7 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
8 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
91, 5, 6, 7, 8setchom 17989 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑦m 𝑥))
10 resssetc.c . . . . . 6 𝐶 = (SetCat‘𝑈)
112adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑈𝑊)
12 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
133adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉𝑈)
1413, 7sseldd 3931 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑈)
1513, 8sseldd 3931 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑈)
1610, 11, 12, 14, 15setchom 17989 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑦m 𝑥))
17 eqid 2733 . . . . . . . 8 (𝐶s 𝑉) = (𝐶s 𝑉)
1817, 12resshom 17324 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
194, 18syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
2019oveqdr 7380 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
219, 16, 203eqtr2rd 2775 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
2221ralrimivva 3176 . . 3 (𝜑 → ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
23 eqid 2733 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
2410, 2setcbas 17987 . . . . . 6 (𝜑𝑈 = (Base‘𝐶))
253, 24sseqtrd 3967 . . . . 5 (𝜑𝑉 ⊆ (Base‘𝐶))
26 eqid 2733 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2717, 26ressbas2 17151 . . . . 5 (𝑉 ⊆ (Base‘𝐶) → 𝑉 = (Base‘(𝐶s 𝑉)))
2825, 27syl 17 . . . 4 (𝜑𝑉 = (Base‘(𝐶s 𝑉)))
291, 4setcbas 17987 . . . 4 (𝜑𝑉 = (Base‘𝐷))
3023, 6, 28, 29homfeq 17602 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
3122, 30mpbird 257 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
324ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
33 eqid 2733 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
34 simplr1 1216 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑉)
35 simplr2 1217 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑉)
36 simplr3 1218 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑉)
37 simprl 770 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
381, 32, 6, 34, 35elsetchom 17990 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ 𝑓:𝑥𝑦))
3937, 38mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓:𝑥𝑦)
40 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
411, 32, 6, 35, 36elsetchom 17990 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↔ 𝑔:𝑦𝑧))
4240, 41mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔:𝑦𝑧)
431, 32, 33, 34, 35, 36, 39, 42setcco 17992 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔𝑓))
442ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
45 eqid 2733 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
463ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉𝑈)
4746, 34sseldd 3931 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑈)
4846, 35sseldd 3931 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑈)
4946, 36sseldd 3931 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑈)
5010, 44, 45, 47, 48, 49, 39, 42setcco 17992 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
5117, 45ressco 17325 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
524, 51syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5352ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5453oveqd 7369 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
5554oveqd 7369 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5643, 50, 553eqtr2d 2774 . . . . . 6 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5756ralrimivva 3176 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5857ralrimivvva 3179 . . . 4 (𝜑 → ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
59 eqid 2733 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
6031eqcomd 2739 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
6133, 59, 6, 29, 28, 60comfeq 17614 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
6258, 61mpbird 257 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
6362eqcomd 2739 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
6431, 63jca 511 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  cop 4581  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  Basecbs 17122  s cress 17143  Hom chom 17174  compcco 17175  Homf chomf 17574  compfccomf 17575  SetCatcsetc 17984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-hom 17187  df-cco 17188  df-homf 17578  df-comf 17579  df-setc 17985
This theorem is referenced by:  funcsetcres2  18002
  Copyright terms: Public domain W3C validator