| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homffn | Structured version Visualization version GIF version | ||
| Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homffn.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffn.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| homffn | ⊢ 𝐹 Fn (𝐵 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffn.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 2 | homffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17704 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 5 | ovex 7446 | . 2 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
| 6 | 4, 5 | fnmpoi 8077 | 1 ⊢ 𝐹 Fn (𝐵 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 × cxp 5663 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Hom chom 17284 Homf chomf 17680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-homf 17684 |
| This theorem is referenced by: homfeqbas 17710 2oppchomf 17738 0ssc 17853 catsubcat 17855 subcss1 17858 issubc3 17865 fullsubc 17866 fullresc 17867 funcres2c 17919 hofcllem 18273 hofcl 18274 oppchofcl 18275 oyoncl 18285 yonffthlem 18297 srhmsubc 20648 srhmsubcALTV 48199 oppcendc 48874 |
| Copyright terms: Public domain | W3C validator |