MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homffn Structured version   Visualization version   GIF version

Theorem homffn 17601
Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homffn.f 𝐹 = (Homf𝐶)
homffn.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
homffn 𝐹 Fn (𝐵 × 𝐵)

Proof of Theorem homffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homffn.f . . 3 𝐹 = (Homf𝐶)
2 homffn.b . . 3 𝐵 = (Base‘𝐶)
3 eqid 2733 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3homffval 17598 . 2 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(Hom ‘𝐶)𝑦))
5 ovex 7385 . 2 (𝑥(Hom ‘𝐶)𝑦) ∈ V
64, 5fnmpoi 8008 1 𝐹 Fn (𝐵 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   × cxp 5617   Fn wfn 6481  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  Homf chomf 17574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-homf 17578
This theorem is referenced by:  homfeqbas  17604  2oppchomf  17632  0ssc  17746  catsubcat  17748  subcss1  17751  issubc3  17758  fullsubc  17759  fullresc  17760  funcres2c  17812  hofcllem  18166  hofcl  18167  oppchofcl  18168  oyoncl  18178  yonffthlem  18190  srhmsubc  20597  srhmsubcALTV  48449  homf0  49134  oppcendc  49143  discsubc  49189  nelsubclem  49192  ssccatid  49197  resccatlem  49198  imaidfu  49235  imaidfu2  49236  imasubc  49276  imassc  49278  setc1onsubc  49727
  Copyright terms: Public domain W3C validator