Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homffn | Structured version Visualization version GIF version |
Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homffn.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffn.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
homffn | ⊢ 𝐹 Fn (𝐵 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffn.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
2 | homffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | 1, 2, 3 | homffval 17316 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(Hom ‘𝐶)𝑦)) |
5 | ovex 7288 | . 2 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
6 | 4, 5 | fnmpoi 7883 | 1 ⊢ 𝐹 Fn (𝐵 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 Homf chomf 17292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-homf 17296 |
This theorem is referenced by: homfeqbas 17322 2oppchomf 17352 0ssc 17468 catsubcat 17470 subcss1 17473 issubc3 17480 fullsubc 17481 fullresc 17482 funcres2c 17533 hofcllem 17892 hofcl 17893 oppchofcl 17894 oyoncl 17904 yonffthlem 17916 srhmsubc 45522 srhmsubcALTV 45540 |
Copyright terms: Public domain | W3C validator |