![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homffn | Structured version Visualization version GIF version |
Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homffn.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffn.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
homffn | ⊢ 𝐹 Fn (𝐵 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffn.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
2 | homffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2778 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | 1, 2, 3 | homffval 16818 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(Hom ‘𝐶)𝑦)) |
5 | ovex 7008 | . 2 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
6 | 4, 5 | fnmpoi 7576 | 1 ⊢ 𝐹 Fn (𝐵 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 × cxp 5405 Fn wfn 6183 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 Hom chom 16432 Homf chomf 16795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-homf 16799 |
This theorem is referenced by: homfeqbas 16824 2oppchomf 16852 0ssc 16965 catsubcat 16967 subcss1 16970 issubc3 16977 fullsubc 16978 fullresc 16979 funcres2c 17029 hofcllem 17366 hofcl 17367 oppchofcl 17368 oyoncl 17378 yonffthlem 17390 srhmsubc 43717 srhmsubcALTV 43735 |
Copyright terms: Public domain | W3C validator |