| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homffn | Structured version Visualization version GIF version | ||
| Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homffn.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffn.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| homffn | ⊢ 𝐹 Fn (𝐵 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffn.f | . . 3 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 2 | homffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17702 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 5 | ovex 7438 | . 2 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
| 6 | 4, 5 | fnmpoi 8069 | 1 ⊢ 𝐹 Fn (𝐵 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5652 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 Homf chomf 17678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-homf 17682 |
| This theorem is referenced by: homfeqbas 17708 2oppchomf 17736 0ssc 17850 catsubcat 17852 subcss1 17855 issubc3 17862 fullsubc 17863 fullresc 17864 funcres2c 17916 hofcllem 18270 hofcl 18271 oppchofcl 18272 oyoncl 18282 yonffthlem 18294 srhmsubc 20640 srhmsubcALTV 48300 homf0 48984 oppcendc 48993 discsubc 49031 nelsubclem 49034 ssccatid 49039 resccatlem 49040 imaidfu 49069 imaidfu2 49070 imasubc 49091 imassc 49093 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |