MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscatc Structured version   Visualization version   GIF version

Theorem resscatc 18055
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCatβ€˜π‘ˆ categories for different π‘ˆ are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resscatc.c 𝐢 = (CatCatβ€˜π‘ˆ)
resscatc.d 𝐷 = (CatCatβ€˜π‘‰)
resscatc.1 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
resscatc.2 (πœ‘ β†’ 𝑉 βŠ† π‘ˆ)
Assertion
Ref Expression
resscatc (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ∧ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·)))

Proof of Theorem resscatc
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resscatc.d . . . . . 6 𝐷 = (CatCatβ€˜π‘‰)
2 eqid 2732 . . . . . 6 (Baseβ€˜π·) = (Baseβ€˜π·)
3 resscatc.1 . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
4 resscatc.2 . . . . . . . 8 (πœ‘ β†’ 𝑉 βŠ† π‘ˆ)
53, 4ssexd 5323 . . . . . . 7 (πœ‘ β†’ 𝑉 ∈ V)
65adantr 481 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ 𝑉 ∈ V)
7 eqid 2732 . . . . . 6 (Hom β€˜π·) = (Hom β€˜π·)
8 simprl 769 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ π‘₯ ∈ (𝑉 ∩ Cat))
91, 2, 5catcbas 18047 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜π·) = (𝑉 ∩ Cat))
109adantr 481 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ (Baseβ€˜π·) = (𝑉 ∩ Cat))
118, 10eleqtrrd 2836 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ π‘₯ ∈ (Baseβ€˜π·))
12 simprr 771 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ 𝑦 ∈ (𝑉 ∩ Cat))
1312, 10eleqtrrd 2836 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ 𝑦 ∈ (Baseβ€˜π·))
141, 2, 6, 7, 11, 13catchom 18049 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ (π‘₯(Hom β€˜π·)𝑦) = (π‘₯ Func 𝑦))
15 resscatc.c . . . . . 6 𝐢 = (CatCatβ€˜π‘ˆ)
16 eqid 2732 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
173adantr 481 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ π‘ˆ ∈ π‘Š)
18 eqid 2732 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
19 inass 4218 . . . . . . . . . . 11 ((𝑉 ∩ π‘ˆ) ∩ Cat) = (𝑉 ∩ (π‘ˆ ∩ Cat))
2015, 16, 3catcbas 18047 . . . . . . . . . . . 12 (πœ‘ β†’ (Baseβ€˜πΆ) = (π‘ˆ ∩ Cat))
2120ineq2d 4211 . . . . . . . . . . 11 (πœ‘ β†’ (𝑉 ∩ (Baseβ€˜πΆ)) = (𝑉 ∩ (π‘ˆ ∩ Cat)))
2219, 21eqtr4id 2791 . . . . . . . . . 10 (πœ‘ β†’ ((𝑉 ∩ π‘ˆ) ∩ Cat) = (𝑉 ∩ (Baseβ€˜πΆ)))
23 df-ss 3964 . . . . . . . . . . . 12 (𝑉 βŠ† π‘ˆ ↔ (𝑉 ∩ π‘ˆ) = 𝑉)
244, 23sylib 217 . . . . . . . . . . 11 (πœ‘ β†’ (𝑉 ∩ π‘ˆ) = 𝑉)
2524ineq1d 4210 . . . . . . . . . 10 (πœ‘ β†’ ((𝑉 ∩ π‘ˆ) ∩ Cat) = (𝑉 ∩ Cat))
26 eqid 2732 . . . . . . . . . . . 12 (𝐢 β†Ύs 𝑉) = (𝐢 β†Ύs 𝑉)
2726, 16ressbas 17175 . . . . . . . . . . 11 (𝑉 ∈ V β†’ (𝑉 ∩ (Baseβ€˜πΆ)) = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
285, 27syl 17 . . . . . . . . . 10 (πœ‘ β†’ (𝑉 ∩ (Baseβ€˜πΆ)) = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
2922, 25, 283eqtr3d 2780 . . . . . . . . 9 (πœ‘ β†’ (𝑉 ∩ Cat) = (Baseβ€˜(𝐢 β†Ύs 𝑉)))
3026, 16ressbasss 17179 . . . . . . . . 9 (Baseβ€˜(𝐢 β†Ύs 𝑉)) βŠ† (Baseβ€˜πΆ)
3129, 30eqsstrdi 4035 . . . . . . . 8 (πœ‘ β†’ (𝑉 ∩ Cat) βŠ† (Baseβ€˜πΆ))
3231adantr 481 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ (𝑉 ∩ Cat) βŠ† (Baseβ€˜πΆ))
3332, 8sseldd 3982 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
3432, 12sseldd 3982 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ 𝑦 ∈ (Baseβ€˜πΆ))
3515, 16, 17, 18, 33, 34catchom 18049 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ (π‘₯(Hom β€˜πΆ)𝑦) = (π‘₯ Func 𝑦))
3626, 18resshom 17360 . . . . . . 7 (𝑉 ∈ V β†’ (Hom β€˜πΆ) = (Hom β€˜(𝐢 β†Ύs 𝑉)))
375, 36syl 17 . . . . . 6 (πœ‘ β†’ (Hom β€˜πΆ) = (Hom β€˜(𝐢 β†Ύs 𝑉)))
3837oveqdr 7433 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ (π‘₯(Hom β€˜πΆ)𝑦) = (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦))
3914, 35, 383eqtr2rd 2779 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) β†’ (π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦))
4039ralrimivva 3200 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ (𝑉 ∩ Cat)βˆ€π‘¦ ∈ (𝑉 ∩ Cat)(π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦))
41 eqid 2732 . . . 4 (Hom β€˜(𝐢 β†Ύs 𝑉)) = (Hom β€˜(𝐢 β†Ύs 𝑉))
429eqcomd 2738 . . . 4 (πœ‘ β†’ (𝑉 ∩ Cat) = (Baseβ€˜π·))
4341, 7, 29, 42homfeq 17634 . . 3 (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ↔ βˆ€π‘₯ ∈ (𝑉 ∩ Cat)βˆ€π‘¦ ∈ (𝑉 ∩ Cat)(π‘₯(Hom β€˜(𝐢 β†Ύs 𝑉))𝑦) = (π‘₯(Hom β€˜π·)𝑦)))
4440, 43mpbird 256 . 2 (πœ‘ β†’ (Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·))
455ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑉 ∈ V)
46 eqid 2732 . . . . . . . 8 (compβ€˜π·) = (compβ€˜π·)
47 simplr1 1215 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ (𝑉 ∩ Cat))
489ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (Baseβ€˜π·) = (𝑉 ∩ Cat))
4947, 48eleqtrrd 2836 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ (Baseβ€˜π·))
50 simplr2 1216 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ (𝑉 ∩ Cat))
5150, 48eleqtrrd 2836 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ (Baseβ€˜π·))
52 simplr3 1217 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ (𝑉 ∩ Cat))
5352, 48eleqtrrd 2836 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ (Baseβ€˜π·))
54 simprl 769 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦))
551, 2, 45, 7, 49, 51catchom 18049 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (π‘₯(Hom β€˜π·)𝑦) = (π‘₯ Func 𝑦))
5654, 55eleqtrd 2835 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑓 ∈ (π‘₯ Func 𝑦))
57 simprr 771 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))
581, 2, 45, 7, 51, 53catchom 18049 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑦(Hom β€˜π·)𝑧) = (𝑦 Func 𝑧))
5957, 58eleqtrd 2835 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑔 ∈ (𝑦 Func 𝑧))
601, 2, 45, 46, 49, 51, 53, 56, 59catcco 18051 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔 ∘func 𝑓))
613ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘ˆ ∈ π‘Š)
62 eqid 2732 . . . . . . . 8 (compβ€˜πΆ) = (compβ€˜πΆ)
6331ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑉 ∩ Cat) βŠ† (Baseβ€˜πΆ))
6463, 47sseldd 3982 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
6563, 50sseldd 3982 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑦 ∈ (Baseβ€˜πΆ))
6663, 52sseldd 3982 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ 𝑧 ∈ (Baseβ€˜πΆ))
6715, 16, 61, 62, 64, 65, 66, 56, 59catcco 18051 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔 ∘func 𝑓))
6826, 62ressco 17361 . . . . . . . . . . 11 (𝑉 ∈ V β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
695, 68syl 17 . . . . . . . . . 10 (πœ‘ β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
7069ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (compβ€˜πΆ) = (compβ€˜(𝐢 β†Ύs 𝑉)))
7170oveqd 7422 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧) = (⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧))
7271oveqd 7422 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
7360, 67, 723eqtr2d 2778 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜π·)𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜π·)𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
7473ralrimivva 3200 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) β†’ βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
7574ralrimivvva 3203 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ (𝑉 ∩ Cat)βˆ€π‘¦ ∈ (𝑉 ∩ Cat)βˆ€π‘§ ∈ (𝑉 ∩ Cat)βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓))
76 eqid 2732 . . . . 5 (compβ€˜(𝐢 β†Ύs 𝑉)) = (compβ€˜(𝐢 β†Ύs 𝑉))
7744eqcomd 2738 . . . . 5 (πœ‘ β†’ (Homf β€˜π·) = (Homf β€˜(𝐢 β†Ύs 𝑉)))
7846, 76, 7, 42, 29, 77comfeq 17646 . . . 4 (πœ‘ β†’ ((compfβ€˜π·) = (compfβ€˜(𝐢 β†Ύs 𝑉)) ↔ βˆ€π‘₯ ∈ (𝑉 ∩ Cat)βˆ€π‘¦ ∈ (𝑉 ∩ Cat)βˆ€π‘§ ∈ (𝑉 ∩ Cat)βˆ€π‘“ ∈ (π‘₯(Hom β€˜π·)𝑦)βˆ€π‘” ∈ (𝑦(Hom β€˜π·)𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π·)𝑧)𝑓) = (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝐢 β†Ύs 𝑉))𝑧)𝑓)))
7975, 78mpbird 256 . . 3 (πœ‘ β†’ (compfβ€˜π·) = (compfβ€˜(𝐢 β†Ύs 𝑉)))
8079eqcomd 2738 . 2 (πœ‘ β†’ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·))
8144, 80jca 512 1 (πœ‘ β†’ ((Homf β€˜(𝐢 β†Ύs 𝑉)) = (Homf β€˜π·) ∧ (compfβ€˜(𝐢 β†Ύs 𝑉)) = (compfβ€˜π·)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βŸ¨cop 4633  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  Hom chom 17204  compcco 17205  Catccat 17604  Homf chomf 17606  compfccomf 17607   Func cfunc 17800   ∘func ccofu 17802  CatCatccatc 18044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-hom 17217  df-cco 17218  df-homf 17610  df-comf 17611  df-catc 18045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator