Step | Hyp | Ref
| Expression |
1 | | resscatc.d |
. . . . . 6
⊢ 𝐷 = (CatCat‘𝑉) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
3 | | resscatc.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑊) |
4 | | resscatc.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
5 | 3, 4 | ssexd 5248 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ V) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑉 ∈ V) |
7 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
8 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (𝑉 ∩ Cat)) |
9 | 1, 2, 5 | catcbas 17816 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐷) = (𝑉 ∩ Cat)) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (Base‘𝐷) = (𝑉 ∩ Cat)) |
11 | 8, 10 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐷)) |
12 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (𝑉 ∩ Cat)) |
13 | 12, 10 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐷)) |
14 | 1, 2, 6, 7, 11, 13 | catchom 17818 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦)) |
15 | | resscatc.c |
. . . . . 6
⊢ 𝐶 = (CatCat‘𝑈) |
16 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
17 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑈 ∈ 𝑊) |
18 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
19 | | inass 4153 |
. . . . . . . . . . 11
⊢ ((𝑉 ∩ 𝑈) ∩ Cat) = (𝑉 ∩ (𝑈 ∩ Cat)) |
20 | 15, 16, 3 | catcbas 17816 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat)) |
21 | 20 | ineq2d 4146 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (𝑉 ∩ (𝑈 ∩ Cat))) |
22 | 19, 21 | eqtr4id 2797 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉 ∩ 𝑈) ∩ Cat) = (𝑉 ∩ (Base‘𝐶))) |
23 | | df-ss 3904 |
. . . . . . . . . . . 12
⊢ (𝑉 ⊆ 𝑈 ↔ (𝑉 ∩ 𝑈) = 𝑉) |
24 | 4, 23 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉 ∩ 𝑈) = 𝑉) |
25 | 24 | ineq1d 4145 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉 ∩ 𝑈) ∩ Cat) = (𝑉 ∩ Cat)) |
26 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝐶 ↾s 𝑉) = (𝐶 ↾s 𝑉) |
27 | 26, 16 | ressbas 16947 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ V → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶 ↾s 𝑉))) |
28 | 5, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶 ↾s 𝑉))) |
29 | 22, 25, 28 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉 ∩ Cat) = (Base‘(𝐶 ↾s 𝑉))) |
30 | 26, 16 | ressbasss 16950 |
. . . . . . . . 9
⊢
(Base‘(𝐶
↾s 𝑉))
⊆ (Base‘𝐶) |
31 | 29, 30 | eqsstrdi 3975 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 ∩ Cat) ⊆ (Base‘𝐶)) |
32 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶)) |
33 | 32, 8 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐶)) |
34 | 32, 12 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐶)) |
35 | 15, 16, 17, 18, 33, 34 | catchom 17818 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 Func 𝑦)) |
36 | 26, 18 | resshom 17129 |
. . . . . . 7
⊢ (𝑉 ∈ V → (Hom
‘𝐶) = (Hom
‘(𝐶
↾s 𝑉))) |
37 | 5, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶 ↾s 𝑉))) |
38 | 37 | oveqdr 7303 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦)) |
39 | 14, 35, 38 | 3eqtr2rd 2785 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
40 | 39 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
41 | | eqid 2738 |
. . . 4
⊢ (Hom
‘(𝐶
↾s 𝑉)) =
(Hom ‘(𝐶
↾s 𝑉)) |
42 | 9 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → (𝑉 ∩ Cat) = (Base‘𝐷)) |
43 | 41, 7, 29, 42 | homfeq 17403 |
. . 3
⊢ (𝜑 → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶 ↾s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))) |
44 | 40, 43 | mpbird 256 |
. 2
⊢ (𝜑 → (Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷)) |
45 | 5 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V) |
46 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐷) =
(comp‘𝐷) |
47 | | simplr1 1214 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (𝑉 ∩ Cat)) |
48 | 9 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (Base‘𝐷) = (𝑉 ∩ Cat)) |
49 | 47, 48 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐷)) |
50 | | simplr2 1215 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (𝑉 ∩ Cat)) |
51 | 50, 48 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐷)) |
52 | | simplr3 1216 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (𝑉 ∩ Cat)) |
53 | 52, 48 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐷)) |
54 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)) |
55 | 1, 2, 45, 7, 49, 51 | catchom 17818 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦)) |
56 | 54, 55 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥 Func 𝑦)) |
57 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
58 | 1, 2, 45, 7, 51, 53 | catchom 17818 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑦(Hom ‘𝐷)𝑧) = (𝑦 Func 𝑧)) |
59 | 57, 58 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦 Func 𝑧)) |
60 | 1, 2, 45, 46, 49, 51, 53, 56, 59 | catcco 17820 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔 ∘func 𝑓)) |
61 | 3 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈 ∈ 𝑊) |
62 | | eqid 2738 |
. . . . . . . 8
⊢
(comp‘𝐶) =
(comp‘𝐶) |
63 | 31 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶)) |
64 | 63, 47 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
65 | 63, 50 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
66 | 63, 52 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
67 | 15, 16, 61, 62, 64, 65, 66, 56, 59 | catcco 17820 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔 ∘func 𝑓)) |
68 | 26, 62 | ressco 17130 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ V →
(comp‘𝐶) =
(comp‘(𝐶
↾s 𝑉))) |
69 | 5, 68 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (comp‘𝐶) = (comp‘(𝐶 ↾s 𝑉))) |
70 | 69 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶 ↾s 𝑉))) |
71 | 70 | oveqd 7292 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)) |
72 | 71 | oveqd 7292 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
73 | 60, 67, 72 | 3eqtr2d 2784 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
74 | 73 | ralrimivva 3123 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
75 | 74 | ralrimivvva 3127 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓)) |
76 | | eqid 2738 |
. . . . 5
⊢
(comp‘(𝐶
↾s 𝑉)) =
(comp‘(𝐶
↾s 𝑉)) |
77 | 44 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐷) =
(Homf ‘(𝐶 ↾s 𝑉))) |
78 | 46, 76, 7, 42, 29, 77 | comfeq 17415 |
. . . 4
⊢ (𝜑 →
((compf‘𝐷) = (compf‘(𝐶 ↾s 𝑉)) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(𝐶 ↾s 𝑉))𝑧)𝑓))) |
79 | 75, 78 | mpbird 256 |
. . 3
⊢ (𝜑 →
(compf‘𝐷) = (compf‘(𝐶 ↾s 𝑉))) |
80 | 79 | eqcomd 2744 |
. 2
⊢ (𝜑 →
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷)) |
81 | 44, 80 | jca 512 |
1
⊢ (𝜑 → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) |