MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscatc Structured version   Visualization version   GIF version

Theorem resscatc 18163
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resscatc.c 𝐶 = (CatCat‘𝑈)
resscatc.d 𝐷 = (CatCat‘𝑉)
resscatc.1 (𝜑𝑈𝑊)
resscatc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resscatc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resscatc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resscatc.d . . . . . 6 𝐷 = (CatCat‘𝑉)
2 eqid 2735 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 resscatc.1 . . . . . . . 8 (𝜑𝑈𝑊)
4 resscatc.2 . . . . . . . 8 (𝜑𝑉𝑈)
53, 4ssexd 5330 . . . . . . 7 (𝜑𝑉 ∈ V)
65adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑉 ∈ V)
7 eqid 2735 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
8 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (𝑉 ∩ Cat))
91, 2, 5catcbas 18155 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (𝑉 ∩ Cat))
109adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (Base‘𝐷) = (𝑉 ∩ Cat))
118, 10eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐷))
12 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (𝑉 ∩ Cat))
1312, 10eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐷))
141, 2, 6, 7, 11, 13catchom 18157 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦))
15 resscatc.c . . . . . 6 𝐶 = (CatCat‘𝑈)
16 eqid 2735 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
173adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑈𝑊)
18 eqid 2735 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
19 inass 4236 . . . . . . . . . . 11 ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ (𝑈 ∩ Cat))
2015, 16, 3catcbas 18155 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat))
2120ineq2d 4228 . . . . . . . . . . 11 (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (𝑉 ∩ (𝑈 ∩ Cat)))
2219, 21eqtr4id 2794 . . . . . . . . . 10 (𝜑 → ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ (Base‘𝐶)))
23 dfss2 3981 . . . . . . . . . . . 12 (𝑉𝑈 ↔ (𝑉𝑈) = 𝑉)
244, 23sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = 𝑉)
2524ineq1d 4227 . . . . . . . . . 10 (𝜑 → ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ Cat))
26 eqid 2735 . . . . . . . . . . . 12 (𝐶s 𝑉) = (𝐶s 𝑉)
2726, 16ressbas 17280 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑉)))
285, 27syl 17 . . . . . . . . . 10 (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑉)))
2922, 25, 283eqtr3d 2783 . . . . . . . . 9 (𝜑 → (𝑉 ∩ Cat) = (Base‘(𝐶s 𝑉)))
3026, 16ressbasss 17284 . . . . . . . . 9 (Base‘(𝐶s 𝑉)) ⊆ (Base‘𝐶)
3129, 30eqsstrdi 4050 . . . . . . . 8 (𝜑 → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
3231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
3332, 8sseldd 3996 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐶))
3432, 12sseldd 3996 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐶))
3515, 16, 17, 18, 33, 34catchom 18157 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 Func 𝑦))
3626, 18resshom 17465 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
375, 36syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
3837oveqdr 7459 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
3914, 35, 383eqtr2rd 2782 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
4039ralrimivva 3200 . . 3 (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
41 eqid 2735 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
429eqcomd 2741 . . . 4 (𝜑 → (𝑉 ∩ Cat) = (Base‘𝐷))
4341, 7, 29, 42homfeq 17739 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
4440, 43mpbird 257 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
455ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
46 eqid 2735 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
47 simplr1 1214 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (𝑉 ∩ Cat))
489ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (Base‘𝐷) = (𝑉 ∩ Cat))
4947, 48eleqtrrd 2842 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐷))
50 simplr2 1215 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (𝑉 ∩ Cat))
5150, 48eleqtrrd 2842 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐷))
52 simplr3 1216 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (𝑉 ∩ Cat))
5352, 48eleqtrrd 2842 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐷))
54 simprl 771 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
551, 2, 45, 7, 49, 51catchom 18157 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦))
5654, 55eleqtrd 2841 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥 Func 𝑦))
57 simprr 773 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
581, 2, 45, 7, 51, 53catchom 18157 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑦(Hom ‘𝐷)𝑧) = (𝑦 Func 𝑧))
5957, 58eleqtrd 2841 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦 Func 𝑧))
601, 2, 45, 46, 49, 51, 53, 56, 59catcco 18159 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔func 𝑓))
613ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
62 eqid 2735 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
6331ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
6463, 47sseldd 3996 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐶))
6563, 50sseldd 3996 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐶))
6663, 52sseldd 3996 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐶))
6715, 16, 61, 62, 64, 65, 66, 56, 59catcco 18159 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔func 𝑓))
6826, 62ressco 17466 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
695, 68syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
7069ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
7170oveqd 7448 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
7271oveqd 7448 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7360, 67, 723eqtr2d 2781 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7473ralrimivva 3200 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7574ralrimivvva 3203 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
76 eqid 2735 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
7744eqcomd 2741 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
7846, 76, 7, 42, 29, 77comfeq 17751 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
7975, 78mpbird 257 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
8079eqcomd 2741 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
8144, 80jca 511 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cin 3962  wss 3963  cop 4637  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  Hom chom 17309  compcco 17310  Catccat 17709  Homf chomf 17711  compfccomf 17712   Func cfunc 17905  func ccofu 17907  CatCatccatc 18152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-hom 17322  df-cco 17323  df-homf 17715  df-comf 17716  df-catc 18153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator