MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscatc Structured version   Visualization version   GIF version

Theorem resscatc 17364
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resscatc.c 𝐶 = (CatCat‘𝑈)
resscatc.d 𝐷 = (CatCat‘𝑉)
resscatc.1 (𝜑𝑈𝑊)
resscatc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resscatc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resscatc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resscatc.d . . . . . 6 𝐷 = (CatCat‘𝑉)
2 eqid 2821 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 resscatc.1 . . . . . . . 8 (𝜑𝑈𝑊)
4 resscatc.2 . . . . . . . 8 (𝜑𝑉𝑈)
53, 4ssexd 5227 . . . . . . 7 (𝜑𝑉 ∈ V)
65adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑉 ∈ V)
7 eqid 2821 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
8 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (𝑉 ∩ Cat))
91, 2, 5catcbas 17356 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (𝑉 ∩ Cat))
109adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (Base‘𝐷) = (𝑉 ∩ Cat))
118, 10eleqtrrd 2916 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐷))
12 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (𝑉 ∩ Cat))
1312, 10eleqtrrd 2916 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐷))
141, 2, 6, 7, 11, 13catchom 17358 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦))
15 resscatc.c . . . . . 6 𝐶 = (CatCat‘𝑈)
16 eqid 2821 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
173adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑈𝑊)
18 eqid 2821 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
1915, 16, 3catcbas 17356 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat))
2019ineq2d 4188 . . . . . . . . . . 11 (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (𝑉 ∩ (𝑈 ∩ Cat)))
21 inass 4195 . . . . . . . . . . 11 ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ (𝑈 ∩ Cat))
2220, 21syl6reqr 2875 . . . . . . . . . 10 (𝜑 → ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ (Base‘𝐶)))
23 df-ss 3951 . . . . . . . . . . . 12 (𝑉𝑈 ↔ (𝑉𝑈) = 𝑉)
244, 23sylib 220 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = 𝑉)
2524ineq1d 4187 . . . . . . . . . 10 (𝜑 → ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ Cat))
26 eqid 2821 . . . . . . . . . . . 12 (𝐶s 𝑉) = (𝐶s 𝑉)
2726, 16ressbas 16553 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑉)))
285, 27syl 17 . . . . . . . . . 10 (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑉)))
2922, 25, 283eqtr3d 2864 . . . . . . . . 9 (𝜑 → (𝑉 ∩ Cat) = (Base‘(𝐶s 𝑉)))
3026, 16ressbasss 16555 . . . . . . . . 9 (Base‘(𝐶s 𝑉)) ⊆ (Base‘𝐶)
3129, 30eqsstrdi 4020 . . . . . . . 8 (𝜑 → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
3231adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
3332, 8sseldd 3967 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐶))
3432, 12sseldd 3967 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐶))
3515, 16, 17, 18, 33, 34catchom 17358 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 Func 𝑦))
3626, 18resshom 16690 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
375, 36syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
3837oveqdr 7183 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
3914, 35, 383eqtr2rd 2863 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
4039ralrimivva 3191 . . 3 (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
41 eqid 2821 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
429eqcomd 2827 . . . 4 (𝜑 → (𝑉 ∩ Cat) = (Base‘𝐷))
4341, 7, 29, 42homfeq 16963 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
4440, 43mpbird 259 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
455ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
46 eqid 2821 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
47 simplr1 1211 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (𝑉 ∩ Cat))
489ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (Base‘𝐷) = (𝑉 ∩ Cat))
4947, 48eleqtrrd 2916 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐷))
50 simplr2 1212 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (𝑉 ∩ Cat))
5150, 48eleqtrrd 2916 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐷))
52 simplr3 1213 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (𝑉 ∩ Cat))
5352, 48eleqtrrd 2916 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐷))
54 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
551, 2, 45, 7, 49, 51catchom 17358 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦))
5654, 55eleqtrd 2915 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥 Func 𝑦))
57 simprr 771 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
581, 2, 45, 7, 51, 53catchom 17358 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑦(Hom ‘𝐷)𝑧) = (𝑦 Func 𝑧))
5957, 58eleqtrd 2915 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦 Func 𝑧))
601, 2, 45, 46, 49, 51, 53, 56, 59catcco 17360 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔func 𝑓))
613ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
62 eqid 2821 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
6331ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
6463, 47sseldd 3967 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐶))
6563, 50sseldd 3967 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐶))
6663, 52sseldd 3967 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐶))
6715, 16, 61, 62, 64, 65, 66, 56, 59catcco 17360 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔func 𝑓))
6826, 62ressco 16691 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
695, 68syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
7069ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
7170oveqd 7172 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
7271oveqd 7172 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7360, 67, 723eqtr2d 2862 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7473ralrimivva 3191 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7574ralrimivvva 3192 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
76 eqid 2821 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
7744eqcomd 2827 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
7846, 76, 7, 42, 29, 77comfeq 16975 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
7975, 78mpbird 259 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
8079eqcomd 2827 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
8144, 80jca 514 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cin 3934  wss 3935  cop 4572  cfv 6354  (class class class)co 7155  Basecbs 16482  s cress 16483  Hom chom 16575  compcco 16576  Catccat 16934  Homf chomf 16936  compfccomf 16937   Func cfunc 17123  func ccofu 17125  CatCatccatc 17353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-hom 16588  df-cco 16589  df-homf 16940  df-comf 16941  df-catc 17354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator