MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscatc Structured version   Visualization version   GIF version

Theorem resscatc 18101
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resscatc.c 𝐶 = (CatCat‘𝑈)
resscatc.d 𝐷 = (CatCat‘𝑉)
resscatc.1 (𝜑𝑈𝑊)
resscatc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resscatc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resscatc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resscatc.d . . . . . 6 𝐷 = (CatCat‘𝑉)
2 eqid 2725 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 resscatc.1 . . . . . . . 8 (𝜑𝑈𝑊)
4 resscatc.2 . . . . . . . 8 (𝜑𝑉𝑈)
53, 4ssexd 5325 . . . . . . 7 (𝜑𝑉 ∈ V)
65adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑉 ∈ V)
7 eqid 2725 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
8 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (𝑉 ∩ Cat))
91, 2, 5catcbas 18093 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (𝑉 ∩ Cat))
109adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (Base‘𝐷) = (𝑉 ∩ Cat))
118, 10eleqtrrd 2828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐷))
12 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (𝑉 ∩ Cat))
1312, 10eleqtrrd 2828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐷))
141, 2, 6, 7, 11, 13catchom 18095 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦))
15 resscatc.c . . . . . 6 𝐶 = (CatCat‘𝑈)
16 eqid 2725 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
173adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑈𝑊)
18 eqid 2725 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
19 inass 4218 . . . . . . . . . . 11 ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ (𝑈 ∩ Cat))
2015, 16, 3catcbas 18093 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Cat))
2120ineq2d 4210 . . . . . . . . . . 11 (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (𝑉 ∩ (𝑈 ∩ Cat)))
2219, 21eqtr4id 2784 . . . . . . . . . 10 (𝜑 → ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ (Base‘𝐶)))
23 dfss2 3962 . . . . . . . . . . . 12 (𝑉𝑈 ↔ (𝑉𝑈) = 𝑉)
244, 23sylib 217 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = 𝑉)
2524ineq1d 4209 . . . . . . . . . 10 (𝜑 → ((𝑉𝑈) ∩ Cat) = (𝑉 ∩ Cat))
26 eqid 2725 . . . . . . . . . . . 12 (𝐶s 𝑉) = (𝐶s 𝑉)
2726, 16ressbas 17218 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑉)))
285, 27syl 17 . . . . . . . . . 10 (𝜑 → (𝑉 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑉)))
2922, 25, 283eqtr3d 2773 . . . . . . . . 9 (𝜑 → (𝑉 ∩ Cat) = (Base‘(𝐶s 𝑉)))
3026, 16ressbasss 17222 . . . . . . . . 9 (Base‘(𝐶s 𝑉)) ⊆ (Base‘𝐶)
3129, 30eqsstrdi 4031 . . . . . . . 8 (𝜑 → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
3231adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
3332, 8sseldd 3977 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑥 ∈ (Base‘𝐶))
3432, 12sseldd 3977 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → 𝑦 ∈ (Base‘𝐶))
3515, 16, 17, 18, 33, 34catchom 18095 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥 Func 𝑦))
3626, 18resshom 17403 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
375, 36syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
3837oveqdr 7447 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
3914, 35, 383eqtr2rd 2772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat))) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
4039ralrimivva 3190 . . 3 (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
41 eqid 2725 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
429eqcomd 2731 . . . 4 (𝜑 → (𝑉 ∩ Cat) = (Base‘𝐷))
4341, 7, 29, 42homfeq 17677 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)(𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
4440, 43mpbird 256 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
455ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
46 eqid 2725 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
47 simplr1 1212 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (𝑉 ∩ Cat))
489ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (Base‘𝐷) = (𝑉 ∩ Cat))
4947, 48eleqtrrd 2828 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐷))
50 simplr2 1213 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (𝑉 ∩ Cat))
5150, 48eleqtrrd 2828 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐷))
52 simplr3 1214 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (𝑉 ∩ Cat))
5352, 48eleqtrrd 2828 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐷))
54 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
551, 2, 45, 7, 49, 51catchom 18095 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥 Func 𝑦))
5654, 55eleqtrd 2827 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥 Func 𝑦))
57 simprr 771 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
581, 2, 45, 7, 51, 53catchom 18095 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑦(Hom ‘𝐷)𝑧) = (𝑦 Func 𝑧))
5957, 58eleqtrd 2827 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦 Func 𝑧))
601, 2, 45, 46, 49, 51, 53, 56, 59catcco 18097 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔func 𝑓))
613ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
62 eqid 2725 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
6331ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑉 ∩ Cat) ⊆ (Base‘𝐶))
6463, 47sseldd 3977 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥 ∈ (Base‘𝐶))
6563, 50sseldd 3977 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦 ∈ (Base‘𝐶))
6663, 52sseldd 3977 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧 ∈ (Base‘𝐶))
6715, 16, 61, 62, 64, 65, 66, 56, 59catcco 18097 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔func 𝑓))
6826, 62ressco 17404 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
695, 68syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
7069ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
7170oveqd 7436 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
7271oveqd 7436 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7360, 67, 723eqtr2d 2771 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7473ralrimivva 3190 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∩ Cat) ∧ 𝑦 ∈ (𝑉 ∩ Cat) ∧ 𝑧 ∈ (𝑉 ∩ Cat))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
7574ralrimivvva 3193 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
76 eqid 2725 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
7744eqcomd 2731 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
7846, 76, 7, 42, 29, 77comfeq 17689 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥 ∈ (𝑉 ∩ Cat)∀𝑦 ∈ (𝑉 ∩ Cat)∀𝑧 ∈ (𝑉 ∩ Cat)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
7975, 78mpbird 256 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
8079eqcomd 2731 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
8144, 80jca 510 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  cin 3943  wss 3944  cop 4636  cfv 6549  (class class class)co 7419  Basecbs 17183  s cress 17212  Hom chom 17247  compcco 17248  Catccat 17647  Homf chomf 17649  compfccomf 17650   Func cfunc 17843  func ccofu 17845  CatCatccatc 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-hom 17260  df-cco 17261  df-homf 17653  df-comf 17654  df-catc 18091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator