Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem2 Structured version   Visualization version   GIF version

Theorem ftc1anclem2 36878
Description: Lemma for ftc1anc 36885- restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018.) (Revised by Brendan Leahy, 8-Aug-2018.)
Assertion
Ref Expression
ftc1anclem2 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐴   𝑡,𝐺

Proof of Theorem ftc1anclem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpri 4650 . . 3 (𝐺 ∈ {ℜ, ℑ} → (𝐺 = ℜ ∨ 𝐺 = ℑ))
2 fveq1 6890 . . . . . . . . . 10 (𝐺 = ℜ → (𝐺‘(𝐹𝑡)) = (ℜ‘(𝐹𝑡)))
32fveq2d 6895 . . . . . . . . 9 (𝐺 = ℜ → (abs‘(𝐺‘(𝐹𝑡))) = (abs‘(ℜ‘(𝐹𝑡))))
43ifeq1d 4547 . . . . . . . 8 (𝐺 = ℜ → if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0) = if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))
54mpteq2dv 5250 . . . . . . 7 (𝐺 = ℜ → (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0)))
65fveq2d 6895 . . . . . 6 (𝐺 = ℜ → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))))
76adantl 481 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))))
8 ffvelcdm 7083 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
98recld 15148 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
109adantlr 712 . . . . . . . . 9 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
11 simpl 482 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹:𝐴⟶ℂ)
1211feqmptd 6960 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
13 simpr 484 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ 𝐿1)
1412, 13eqeltrrd 2833 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1)
158iblcn 25561 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)))
1615biimpa 476 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ (𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
1714, 16syldan 590 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
1817simpld 494 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1)
199recnd 11249 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℂ)
20 eqidd 2732 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))))
21 absf 15291 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . 13 (𝐹:𝐴⟶ℂ → abs:ℂ⟶ℝ)
2322feqmptd 6960 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
24 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = (ℜ‘(𝐹𝑡)) → (abs‘𝑥) = (abs‘(ℜ‘(𝐹𝑡))))
2519, 20, 23, 24fmptco 7129 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))))
2625adantr 480 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))))
279fmpttd 7116 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ)
2827adantr 480 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ)
29 iblmbf 25530 . . . . . . . . . . . . . . 15 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3029adantl 481 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ MblFn)
3112, 30eqeltrrd 2833 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn)
328ismbfcn2 25400 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn ↔ ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)))
3332biimpa 476 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ (𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
3431, 33syldan 590 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
3534simpld 494 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn)
36 ftc1anclem1 36877 . . . . . . . . . . 11 (((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ ∧ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) ∈ MblFn)
3728, 35, 36syl2anc 583 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) ∈ MblFn)
3826, 37eqeltrrd 2833 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn)
3910, 18, 38iblabsnc 36868 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1)
4019abscld 15390 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (abs‘(ℜ‘(𝐹𝑡))) ∈ ℝ)
4119absge0d 15398 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → 0 ≤ (abs‘(ℜ‘(𝐹𝑡))))
4240, 41iblpos 25555 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)))
4342adantr 480 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)))
4439, 43mpbid 231 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ))
4544simprd 495 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
4645adantr 480 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
477, 46eqeltrd 2832 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
48 fveq1 6890 . . . . . . . . . 10 (𝐺 = ℑ → (𝐺‘(𝐹𝑡)) = (ℑ‘(𝐹𝑡)))
4948fveq2d 6895 . . . . . . . . 9 (𝐺 = ℑ → (abs‘(𝐺‘(𝐹𝑡))) = (abs‘(ℑ‘(𝐹𝑡))))
5049ifeq1d 4547 . . . . . . . 8 (𝐺 = ℑ → if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0) = if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))
5150mpteq2dv 5250 . . . . . . 7 (𝐺 = ℑ → (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0)))
5251fveq2d 6895 . . . . . 6 (𝐺 = ℑ → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))))
5352adantl 481 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))))
548imcld 15149 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℝ)
5554recnd 11249 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
5655adantlr 712 . . . . . . . . 9 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
5717simprd 495 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)
58 eqidd 2732 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))))
59 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = (ℑ‘(𝐹𝑡)) → (abs‘𝑥) = (abs‘(ℑ‘(𝐹𝑡))))
6055, 58, 23, 59fmptco 7129 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))))
6160adantr 480 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))))
6254fmpttd 7116 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ)
6362adantr 480 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ)
6434simprd 495 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)
65 ftc1anclem1 36877 . . . . . . . . . . 11 (((𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) ∈ MblFn)
6663, 64, 65syl2anc 583 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) ∈ MblFn)
6761, 66eqeltrrd 2833 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn)
6856, 57, 67iblabsnc 36868 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1)
6955abscld 15390 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (abs‘(ℑ‘(𝐹𝑡))) ∈ ℝ)
7055absge0d 15398 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → 0 ≤ (abs‘(ℑ‘(𝐹𝑡))))
7169, 70iblpos 25555 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)))
7271adantr 480 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)))
7368, 72mpbid 231 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ))
7473simprd 495 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
7574adantr 480 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
7653, 75eqeltrd 2832 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
7747, 76jaodan 955 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ (𝐺 = ℜ ∨ 𝐺 = ℑ)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
781, 77sylan2 592 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
79783impa 1109 1 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  ifcif 4528  {cpr 4630  cmpt 5231  ccom 5680  wf 6539  cfv 6543  cc 11114  cr 11115  0cc0 11116  cre 15051  cim 15052  abscabs 15188  MblFncmbf 25376  2citg2 25378  𝐿1cibl 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640  df-rest 17375  df-topgen 17396  df-psmet 21140  df-xmet 21141  df-met 21142  df-bl 21143  df-mopn 21144  df-top 22629  df-topon 22646  df-bases 22682  df-cmp 23124  df-ovol 25226  df-vol 25227  df-mbf 25381  df-itg1 25382  df-itg2 25383  df-ibl 25384  df-0p 25432
This theorem is referenced by:  ftc1anclem8  36884
  Copyright terms: Public domain W3C validator