Step | Hyp | Ref
| Expression |
1 | | elpri 4583 |
. . 3
⊢ (𝐺 ∈ {ℜ, ℑ} →
(𝐺 = ℜ ∨ 𝐺 = ℑ)) |
2 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝐺 = ℜ → (𝐺‘(𝐹‘𝑡)) = (ℜ‘(𝐹‘𝑡))) |
3 | 2 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝐺 = ℜ →
(abs‘(𝐺‘(𝐹‘𝑡))) = (abs‘(ℜ‘(𝐹‘𝑡)))) |
4 | 3 | ifeq1d 4478 |
. . . . . . . 8
⊢ (𝐺 = ℜ → if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0) = if(𝑡 ∈ 𝐴, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) |
5 | 4 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝐺 = ℜ → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) |
6 | 5 | fveq2d 6778 |
. . . . . 6
⊢ (𝐺 = ℜ →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(ℜ‘(𝐹‘𝑡))), 0)))) |
7 | 6 | adantl 482 |
. . . . 5
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(ℜ‘(𝐹‘𝑡))), 0)))) |
8 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
9 | 8 | recld 14905 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (ℜ‘(𝐹‘𝑡)) ∈ ℝ) |
10 | 9 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡 ∈ 𝐴) → (ℜ‘(𝐹‘𝑡)) ∈ ℝ) |
11 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹:𝐴⟶ℂ) |
12 | 11 | feqmptd 6837 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 = (𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡))) |
13 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈
𝐿1) |
14 | 12, 13 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡)) ∈
𝐿1) |
15 | 8 | iblcn 24963 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → ((𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡)) ∈ 𝐿1 ↔
((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ 𝐿1 ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈
𝐿1))) |
16 | 15 | biimpa 477 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ (𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡)) ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ 𝐿1 ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈
𝐿1)) |
17 | 14, 16 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ 𝐿1 ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈
𝐿1)) |
18 | 17 | simpld 495 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈
𝐿1) |
19 | 9 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (ℜ‘(𝐹‘𝑡)) ∈ ℂ) |
20 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) = (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡)))) |
21 | | absf 15049 |
. . . . . . . . . . . . . 14
⊢
abs:ℂ⟶ℝ |
22 | 21 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴⟶ℂ →
abs:ℂ⟶ℝ) |
23 | 22 | feqmptd 6837 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → abs = (𝑥 ∈ ℂ ↦
(abs‘𝑥))) |
24 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = (ℜ‘(𝐹‘𝑡)) → (abs‘𝑥) = (abs‘(ℜ‘(𝐹‘𝑡)))) |
25 | 19, 20, 23, 24 | fmptco 7001 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡)))) = (𝑡 ∈ 𝐴 ↦ (abs‘(ℜ‘(𝐹‘𝑡))))) |
26 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs
∘ (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡)))) = (𝑡 ∈ 𝐴 ↦ (abs‘(ℜ‘(𝐹‘𝑡))))) |
27 | 9 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))):𝐴⟶ℝ) |
28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))):𝐴⟶ℝ) |
29 | | iblmbf 24932 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
30 | 29 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ MblFn) |
31 | 12, 30 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡)) ∈ MblFn) |
32 | 8 | ismbfcn2 24802 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐴⟶ℂ → ((𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡)) ∈ MblFn ↔ ((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn))) |
33 | 32 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℂ ∧ (𝑡 ∈ 𝐴 ↦ (𝐹‘𝑡)) ∈ MblFn) → ((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn)) |
34 | 31, 33 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn)) |
35 | 34 | simpld 495 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn) |
36 | | ftc1anclem1 35850 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))):𝐴⟶ℝ ∧ (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡)))) ∈ MblFn) |
37 | 28, 35, 36 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs
∘ (𝑡 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑡)))) ∈ MblFn) |
38 | 26, 37 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (abs‘(ℜ‘(𝐹‘𝑡)))) ∈ MblFn) |
39 | 10, 18, 38 | iblabsnc 35841 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (abs‘(ℜ‘(𝐹‘𝑡)))) ∈
𝐿1) |
40 | 19 | abscld 15148 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ) |
41 | 19 | absge0d 15156 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡)))) |
42 | 40, 41 | iblpos 24957 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶ℂ → ((𝑡 ∈ 𝐴 ↦ (abs‘(ℜ‘(𝐹‘𝑡)))) ∈ 𝐿1 ↔
((𝑡 ∈ 𝐴 ↦
(abs‘(ℜ‘(𝐹‘𝑡)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ))) |
43 | 42 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦
(abs‘(ℜ‘(𝐹‘𝑡)))) ∈ 𝐿1 ↔
((𝑡 ∈ 𝐴 ↦
(abs‘(ℜ‘(𝐹‘𝑡)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ))) |
44 | 39, 43 | mpbid 231 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦
(abs‘(ℜ‘(𝐹‘𝑡)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ)) |
45 | 44 | simprd 496 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
46 | 45 | adantr 481 |
. . . . 5
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
47 | 7, 46 | eqeltrd 2839 |
. . . 4
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
48 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝐺 = ℑ → (𝐺‘(𝐹‘𝑡)) = (ℑ‘(𝐹‘𝑡))) |
49 | 48 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝐺 = ℑ →
(abs‘(𝐺‘(𝐹‘𝑡))) = (abs‘(ℑ‘(𝐹‘𝑡)))) |
50 | 49 | ifeq1d 4478 |
. . . . . . . 8
⊢ (𝐺 = ℑ → if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0) = if(𝑡 ∈ 𝐴, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) |
51 | 50 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝐺 = ℑ → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) |
52 | 51 | fveq2d 6778 |
. . . . . 6
⊢ (𝐺 = ℑ →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
53 | 52 | adantl 482 |
. . . . 5
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
54 | 8 | imcld 14906 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (ℑ‘(𝐹‘𝑡)) ∈ ℝ) |
55 | 54 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (ℑ‘(𝐹‘𝑡)) ∈ ℂ) |
56 | 55 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡 ∈ 𝐴) → (ℑ‘(𝐹‘𝑡)) ∈ ℂ) |
57 | 17 | simprd 496 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈
𝐿1) |
58 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) = (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡)))) |
59 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = (ℑ‘(𝐹‘𝑡)) → (abs‘𝑥) = (abs‘(ℑ‘(𝐹‘𝑡)))) |
60 | 55, 58, 23, 59 | fmptco 7001 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡)))) = (𝑡 ∈ 𝐴 ↦ (abs‘(ℑ‘(𝐹‘𝑡))))) |
61 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs
∘ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡)))) = (𝑡 ∈ 𝐴 ↦ (abs‘(ℑ‘(𝐹‘𝑡))))) |
62 | 54 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))):𝐴⟶ℝ) |
63 | 62 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))):𝐴⟶ℝ) |
64 | 34 | simprd 496 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn) |
65 | | ftc1anclem1 35850 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))):𝐴⟶ℝ ∧ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡)))) ∈ MblFn) |
66 | 63, 64, 65 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs
∘ (𝑡 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑡)))) ∈ MblFn) |
67 | 61, 66 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ MblFn) |
68 | 56, 57, 67 | iblabsnc 35841 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡 ∈ 𝐴 ↦ (abs‘(ℑ‘(𝐹‘𝑡)))) ∈
𝐿1) |
69 | 55 | abscld 15148 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ) |
70 | 55 | absge0d 15156 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑡 ∈ 𝐴) → 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡)))) |
71 | 69, 70 | iblpos 24957 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶ℂ → ((𝑡 ∈ 𝐴 ↦ (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ 𝐿1 ↔
((𝑡 ∈ 𝐴 ↦
(abs‘(ℑ‘(𝐹‘𝑡)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ))) |
72 | 71 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦
(abs‘(ℑ‘(𝐹‘𝑡)))) ∈ 𝐿1 ↔
((𝑡 ∈ 𝐴 ↦
(abs‘(ℑ‘(𝐹‘𝑡)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ))) |
73 | 68, 72 | mpbid 231 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
((𝑡 ∈ 𝐴 ↦
(abs‘(ℑ‘(𝐹‘𝑡)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ)) |
74 | 73 | simprd 496 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
75 | 74 | adantr 481 |
. . . . 5
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
76 | 53, 75 | eqeltrd 2839 |
. . . 4
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
77 | 47, 76 | jaodan 955 |
. . 3
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ (𝐺 = ℜ ∨ 𝐺 = ℑ)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
78 | 1, 77 | sylan2 593 |
. 2
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 ∈ {ℜ, ℑ})
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
79 | 78 | 3impa 1109 |
1
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ 𝐺 ∈ {ℜ, ℑ})
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) |