Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem2 Structured version   Visualization version   GIF version

Theorem ftc1anclem2 34962
Description: Lemma for ftc1anc 34969- restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018.) (Revised by Brendan Leahy, 8-Aug-2018.)
Assertion
Ref Expression
ftc1anclem2 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐴   𝑡,𝐺

Proof of Theorem ftc1anclem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpri 4582 . . 3 (𝐺 ∈ {ℜ, ℑ} → (𝐺 = ℜ ∨ 𝐺 = ℑ))
2 fveq1 6663 . . . . . . . . . 10 (𝐺 = ℜ → (𝐺‘(𝐹𝑡)) = (ℜ‘(𝐹𝑡)))
32fveq2d 6668 . . . . . . . . 9 (𝐺 = ℜ → (abs‘(𝐺‘(𝐹𝑡))) = (abs‘(ℜ‘(𝐹𝑡))))
43ifeq1d 4484 . . . . . . . 8 (𝐺 = ℜ → if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0) = if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))
54mpteq2dv 5154 . . . . . . 7 (𝐺 = ℜ → (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0)))
65fveq2d 6668 . . . . . 6 (𝐺 = ℜ → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))))
76adantl 484 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))))
8 ffvelrn 6843 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
98recld 14547 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
109adantlr 713 . . . . . . . . 9 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
11 simpl 485 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹:𝐴⟶ℂ)
1211feqmptd 6727 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
13 simpr 487 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ 𝐿1)
1412, 13eqeltrrd 2914 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1)
158iblcn 24393 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)))
1615biimpa 479 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ (𝑡𝐴 ↦ (𝐹𝑡)) ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
1714, 16syldan 593 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
1817simpld 497 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1)
199recnd 10663 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℜ‘(𝐹𝑡)) ∈ ℂ)
20 eqidd 2822 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))))
21 absf 14691 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . 13 (𝐹:𝐴⟶ℂ → abs:ℂ⟶ℝ)
2322feqmptd 6727 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
24 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = (ℜ‘(𝐹𝑡)) → (abs‘𝑥) = (abs‘(ℜ‘(𝐹𝑡))))
2519, 20, 23, 24fmptco 6885 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))))
2625adantr 483 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))))
279fmpttd 6873 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ)
2827adantr 483 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ)
29 iblmbf 24362 . . . . . . . . . . . . . . 15 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3029adantl 484 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → 𝐹 ∈ MblFn)
3112, 30eqeltrrd 2914 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn)
328ismbfcn2 24233 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn ↔ ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)))
3332biimpa 479 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℂ ∧ (𝑡𝐴 ↦ (𝐹𝑡)) ∈ MblFn) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
3431, 33syldan 593 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
3534simpld 497 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn)
36 ftc1anclem1 34961 . . . . . . . . . . 11 (((𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))):𝐴⟶ℝ ∧ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) ∈ MblFn)
3728, 35, 36syl2anc 586 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℜ‘(𝐹𝑡)))) ∈ MblFn)
3826, 37eqeltrrd 2914 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn)
3910, 18, 38iblabsnc 34950 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1)
4019abscld 14790 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (abs‘(ℜ‘(𝐹𝑡))) ∈ ℝ)
4119absge0d 14798 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → 0 ≤ (abs‘(ℜ‘(𝐹𝑡))))
4240, 41iblpos 24387 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)))
4342adantr 483 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)))
4439, 43mpbid 234 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℜ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ))
4544simprd 498 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
4645adantr 483 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
477, 46eqeltrd 2913 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℜ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
48 fveq1 6663 . . . . . . . . . 10 (𝐺 = ℑ → (𝐺‘(𝐹𝑡)) = (ℑ‘(𝐹𝑡)))
4948fveq2d 6668 . . . . . . . . 9 (𝐺 = ℑ → (abs‘(𝐺‘(𝐹𝑡))) = (abs‘(ℑ‘(𝐹𝑡))))
5049ifeq1d 4484 . . . . . . . 8 (𝐺 = ℑ → if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0) = if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))
5150mpteq2dv 5154 . . . . . . 7 (𝐺 = ℑ → (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0)))
5251fveq2d 6668 . . . . . 6 (𝐺 = ℑ → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))))
5352adantl 484 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))))
548imcld 14548 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℝ)
5554recnd 10663 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
5655adantlr 713 . . . . . . . . 9 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝑡𝐴) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
5717simprd 498 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)
58 eqidd 2822 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) = (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))))
59 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = (ℑ‘(𝐹𝑡)) → (abs‘𝑥) = (abs‘(ℑ‘(𝐹𝑡))))
6055, 58, 23, 59fmptco 6885 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))))
6160adantr 483 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) = (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))))
6254fmpttd 6873 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ)
6362adantr 483 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ)
6434simprd 498 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)
65 ftc1anclem1 34961 . . . . . . . . . . 11 (((𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))):𝐴⟶ℝ ∧ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) ∈ MblFn)
6663, 64, 65syl2anc 586 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (abs ∘ (𝑡𝐴 ↦ (ℑ‘(𝐹𝑡)))) ∈ MblFn)
6761, 66eqeltrrd 2914 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn)
6856, 57, 67iblabsnc 34950 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1)
6955abscld 14790 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → (abs‘(ℑ‘(𝐹𝑡))) ∈ ℝ)
7055absge0d 14798 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ 𝑡𝐴) → 0 ≤ (abs‘(ℑ‘(𝐹𝑡))))
7169, 70iblpos 24387 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)))
7271adantr 483 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ 𝐿1 ↔ ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)))
7368, 72mpbid 234 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → ((𝑡𝐴 ↦ (abs‘(ℑ‘(𝐹𝑡)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ))
7473simprd 498 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
7574adantr 483 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
7653, 75eqeltrd 2913 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 = ℑ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
7747, 76jaodan 954 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ (𝐺 = ℜ ∨ 𝐺 = ℑ)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
781, 77sylan2 594 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1) ∧ 𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
79783impa 1106 1 ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  ifcif 4466  {cpr 4562  cmpt 5138  ccom 5553  wf 6345  cfv 6349  cc 10529  cr 10530  0cc0 10531  cre 14450  cim 14451  abscabs 14587  MblFncmbf 24209  2citg2 24211  𝐿1cibl 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-0p 24265
This theorem is referenced by:  ftc1anclem8  34968
  Copyright terms: Public domain W3C validator